后新冠肺炎时代公众出行意愿的变化:来自社交网络数据的证据

IF 1 4区 数学 Q1 MATHEMATICS
Yazao Yang, Haodong Tang, Tangzheng Weng
{"title":"后新冠肺炎时代公众出行意愿的变化:来自社交网络数据的证据","authors":"Yazao Yang, Haodong Tang, Tangzheng Weng","doi":"10.3934/era.2023187","DOIUrl":null,"url":null,"abstract":"Amid the impact of COVID-19, the public's willingness to travel has changed, which has had a fundamental impact on the ridership of urban public transport. Usually, travel willingness is mainly analyzed by questionnaire survey, but it needs to reflect the accurate psychological perception of the public entirely. Based on Weibo text data, this paper used natural language processing technology to quantify the public's willingness to travel in the post-COVID-19 era. First, web crawler technology was used to collect microblog text data, which will discuss COVID-19 and travel at the same time. Then, based on the Naive Bayes classification algorithm, travel sentiment analysis was carried out on the data, and the relationship between public travel willingness and urban public transport ridership was analyzed by Spearman correlation analysis. Finally, the LDA topic model was used to conduct content topic research on microblog text data during and after COVID-19. The results showed that the mean values of compelling travel emotion were -0.8197 and -0.0640 during and after COVID-19, respectively. The willingness of the public to travel directly affects the ridership of urban public transport. Compared with the COVID-19 period, the public's fear of travel infection in the post-COVID-19 era has significantly improved, but it still exists. The public pays more attention to the level of COVID-19 prevention and control and the length of travel time on public transport.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in public travel willingness in the post-COVID-19 era: Evidence from social network data\",\"authors\":\"Yazao Yang, Haodong Tang, Tangzheng Weng\",\"doi\":\"10.3934/era.2023187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amid the impact of COVID-19, the public's willingness to travel has changed, which has had a fundamental impact on the ridership of urban public transport. Usually, travel willingness is mainly analyzed by questionnaire survey, but it needs to reflect the accurate psychological perception of the public entirely. Based on Weibo text data, this paper used natural language processing technology to quantify the public's willingness to travel in the post-COVID-19 era. First, web crawler technology was used to collect microblog text data, which will discuss COVID-19 and travel at the same time. Then, based on the Naive Bayes classification algorithm, travel sentiment analysis was carried out on the data, and the relationship between public travel willingness and urban public transport ridership was analyzed by Spearman correlation analysis. Finally, the LDA topic model was used to conduct content topic research on microblog text data during and after COVID-19. The results showed that the mean values of compelling travel emotion were -0.8197 and -0.0640 during and after COVID-19, respectively. The willingness of the public to travel directly affects the ridership of urban public transport. Compared with the COVID-19 period, the public's fear of travel infection in the post-COVID-19 era has significantly improved, but it still exists. The public pays more attention to the level of COVID-19 prevention and control and the length of travel time on public transport.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023187\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023187","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受新冠肺炎疫情影响,市民出行意愿发生变化,对城市公共交通客流量产生了根本性影响。通常,旅游意愿主要是通过问卷调查的方式进行分析,但它需要完全准确地反映公众的心理感知。本文基于微博文本数据,运用自然语言处理技术对后新冠时代公众出行意愿进行量化。首先,使用网络爬虫技术收集微博文本数据,同时讨论COVID-19和旅行。然后,基于朴素贝叶斯分类算法对数据进行出行情绪分析,并通过Spearman相关分析分析公众出行意愿与城市公共交通客流量的关系。最后,利用LDA话题模型对疫情期间和疫情后的微博文本数据进行内容话题研究。结果表明:新型冠状病毒感染期间和感染后强迫旅行情绪均值分别为-0.8197和-0.0640;市民出行意愿直接影响城市公共交通的客流量。与新冠肺炎时期相比,后新冠肺炎时代公众对旅行感染的恐惧情绪明显改善,但仍存在。公众更加关注疫情防控水平和乘坐公共交通工具的时间长短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Changes in public travel willingness in the post-COVID-19 era: Evidence from social network data
Amid the impact of COVID-19, the public's willingness to travel has changed, which has had a fundamental impact on the ridership of urban public transport. Usually, travel willingness is mainly analyzed by questionnaire survey, but it needs to reflect the accurate psychological perception of the public entirely. Based on Weibo text data, this paper used natural language processing technology to quantify the public's willingness to travel in the post-COVID-19 era. First, web crawler technology was used to collect microblog text data, which will discuss COVID-19 and travel at the same time. Then, based on the Naive Bayes classification algorithm, travel sentiment analysis was carried out on the data, and the relationship between public travel willingness and urban public transport ridership was analyzed by Spearman correlation analysis. Finally, the LDA topic model was used to conduct content topic research on microblog text data during and after COVID-19. The results showed that the mean values of compelling travel emotion were -0.8197 and -0.0640 during and after COVID-19, respectively. The willingness of the public to travel directly affects the ridership of urban public transport. Compared with the COVID-19 period, the public's fear of travel infection in the post-COVID-19 era has significantly improved, but it still exists. The public pays more attention to the level of COVID-19 prevention and control and the length of travel time on public transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信