基于位置关系和随机森林的汽车与电动自行车碰撞现场伤害严重程度评估模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ye Yu, Zhiyuan Liu
{"title":"基于位置关系和随机森林的汽车与电动自行车碰撞现场伤害严重程度评估模型","authors":"Ye Yu, Zhiyuan Liu","doi":"10.3934/era.2023173","DOIUrl":null,"url":null,"abstract":"Vulnerable road users (VRUs) are usually more susceptible to fatal injuries. Accurate and rapid assessment of VRU injury severity at the accident scene can provide timely support for decision-making in emergency response. However, evaluating VRU injury severity at the accident scene usually requires medical knowledge and medical devices. Few studies have explored the possibility of using on-site positional relationship to assess injury severity, which could provide a new perspective for on-site transportation professionals to assess accident severity. This study proposes a data-driven on-site injury severity assessment model for car-to-electric-bicycle accidents based on the relationship between the final resting positions of the car, electric bicycle and cyclist at the accident scene. Random forest is employed to learn the accident features from the at-scene positional relationship among accident participants, by which injury severity of the cyclist is assessed. Conditional permutation importance, which can account for correlation among predictor variables, is adopted to reflect the importance of predictor variables more accurately. The proposed model is demonstrated using simulated car-to-electric-bicycle collision data. The results show that the proposed model has good performance in terms of overall accuracy and is balanced in recognizing both fatal and non-fatal accidents. Model performance under partial information confirms that the position information of the electric bicycle is more important than the position information of the cyclist in assessing injury severity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data-driven on-site injury severity assessment model for car-to-electric-bicycle collisions based on positional relationship and random forest\",\"authors\":\"Ye Yu, Zhiyuan Liu\",\"doi\":\"10.3934/era.2023173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vulnerable road users (VRUs) are usually more susceptible to fatal injuries. Accurate and rapid assessment of VRU injury severity at the accident scene can provide timely support for decision-making in emergency response. However, evaluating VRU injury severity at the accident scene usually requires medical knowledge and medical devices. Few studies have explored the possibility of using on-site positional relationship to assess injury severity, which could provide a new perspective for on-site transportation professionals to assess accident severity. This study proposes a data-driven on-site injury severity assessment model for car-to-electric-bicycle accidents based on the relationship between the final resting positions of the car, electric bicycle and cyclist at the accident scene. Random forest is employed to learn the accident features from the at-scene positional relationship among accident participants, by which injury severity of the cyclist is assessed. Conditional permutation importance, which can account for correlation among predictor variables, is adopted to reflect the importance of predictor variables more accurately. The proposed model is demonstrated using simulated car-to-electric-bicycle collision data. The results show that the proposed model has good performance in terms of overall accuracy and is balanced in recognizing both fatal and non-fatal accidents. Model performance under partial information confirms that the position information of the electric bicycle is more important than the position information of the cyclist in assessing injury severity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023173\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

弱势道路使用者通常更容易受到致命伤害。准确、快速地评估事故现场VRU损伤严重程度,可为应急响应决策提供及时支持。然而,在事故现场评估VRU伤害严重程度通常需要医学知识和医疗设备。很少有研究探索利用现场位置关系评估伤害严重程度的可能性,这可能为现场运输专业人员评估事故严重程度提供新的视角。基于事故现场汽车、电动自行车和骑车人最终休息位置之间的关系,提出了基于数据驱动的汽车-电动自行车事故现场伤害严重程度评估模型。利用随机森林从事故参与者的现场位置关系中学习事故特征,评估骑车人的受伤严重程度。为了更准确地反映预测变量的重要程度,采用了条件排列重要度来说明预测变量之间的相关性。利用模拟的汽车与电动自行车碰撞数据对该模型进行了验证。结果表明,该模型在识别致命事故和非致命事故方面具有良好的总体精度和平衡性。部分信息下的模型性能证实,在评估损伤严重程度时,电动自行车的位置信息比骑车人的位置信息更重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven on-site injury severity assessment model for car-to-electric-bicycle collisions based on positional relationship and random forest
Vulnerable road users (VRUs) are usually more susceptible to fatal injuries. Accurate and rapid assessment of VRU injury severity at the accident scene can provide timely support for decision-making in emergency response. However, evaluating VRU injury severity at the accident scene usually requires medical knowledge and medical devices. Few studies have explored the possibility of using on-site positional relationship to assess injury severity, which could provide a new perspective for on-site transportation professionals to assess accident severity. This study proposes a data-driven on-site injury severity assessment model for car-to-electric-bicycle accidents based on the relationship between the final resting positions of the car, electric bicycle and cyclist at the accident scene. Random forest is employed to learn the accident features from the at-scene positional relationship among accident participants, by which injury severity of the cyclist is assessed. Conditional permutation importance, which can account for correlation among predictor variables, is adopted to reflect the importance of predictor variables more accurately. The proposed model is demonstrated using simulated car-to-electric-bicycle collision data. The results show that the proposed model has good performance in terms of overall accuracy and is balanced in recognizing both fatal and non-fatal accidents. Model performance under partial information confirms that the position information of the electric bicycle is more important than the position information of the cyclist in assessing injury severity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信