Xuecheng Tian, Ran Yan, Shuaian Wang, Yannick Liu, Lu Zhen
{"title":"物流规范分析教程:预测什么以及如何预测","authors":"Xuecheng Tian, Ran Yan, Shuaian Wang, Yannick Liu, Lu Zhen","doi":"10.3934/era.2023116","DOIUrl":null,"url":null,"abstract":"The development of the Internet of things (IoT) and online platforms enables companies and governments to collect data from a much broader spatial and temporal area in the logistics industry. The huge amount of data provides new opportunities to handle uncertainty in optimization problems within the logistics system. Accordingly, various prescriptive analytics frameworks have been developed to predict different parts of uncertain optimization problems, including the uncertain parameter, the combined coefficient consisting of the uncertain parameter, the objective function, and the optimal solution. This tutorial serves as the pioneer to introduce existing literature on state-of-the-art prescriptive analytics methods, such as the predict-then-optimize framework, the smart predict-then-optimize framework, the weighted sample average approximation framework, the empirical risk minimization framework, and the kernel optimization framework. Based on these frameworks, this tutorial further proposes possible improvements and practical tips to be considered when we use these methods. We hope that this tutorial will serve as a reference for future prescriptive analytics research on the logistics system in the era of big data.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"121 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Tutorial on prescriptive analytics for logistics: What to predict and how to predict\",\"authors\":\"Xuecheng Tian, Ran Yan, Shuaian Wang, Yannick Liu, Lu Zhen\",\"doi\":\"10.3934/era.2023116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the Internet of things (IoT) and online platforms enables companies and governments to collect data from a much broader spatial and temporal area in the logistics industry. The huge amount of data provides new opportunities to handle uncertainty in optimization problems within the logistics system. Accordingly, various prescriptive analytics frameworks have been developed to predict different parts of uncertain optimization problems, including the uncertain parameter, the combined coefficient consisting of the uncertain parameter, the objective function, and the optimal solution. This tutorial serves as the pioneer to introduce existing literature on state-of-the-art prescriptive analytics methods, such as the predict-then-optimize framework, the smart predict-then-optimize framework, the weighted sample average approximation framework, the empirical risk minimization framework, and the kernel optimization framework. Based on these frameworks, this tutorial further proposes possible improvements and practical tips to be considered when we use these methods. We hope that this tutorial will serve as a reference for future prescriptive analytics research on the logistics system in the era of big data.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023116\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Tutorial on prescriptive analytics for logistics: What to predict and how to predict
The development of the Internet of things (IoT) and online platforms enables companies and governments to collect data from a much broader spatial and temporal area in the logistics industry. The huge amount of data provides new opportunities to handle uncertainty in optimization problems within the logistics system. Accordingly, various prescriptive analytics frameworks have been developed to predict different parts of uncertain optimization problems, including the uncertain parameter, the combined coefficient consisting of the uncertain parameter, the objective function, and the optimal solution. This tutorial serves as the pioneer to introduce existing literature on state-of-the-art prescriptive analytics methods, such as the predict-then-optimize framework, the smart predict-then-optimize framework, the weighted sample average approximation framework, the empirical risk minimization framework, and the kernel optimization framework. Based on these frameworks, this tutorial further proposes possible improvements and practical tips to be considered when we use these methods. We hope that this tutorial will serve as a reference for future prescriptive analytics research on the logistics system in the era of big data.