{"title":"变指数半线性椭圆型问题径向正解的存在性","authors":"Changmu Chu, Shan Li, H. Suo","doi":"10.3934/era.2023125","DOIUrl":null,"url":null,"abstract":"<abstract><p>This paper consider that the following semilinear elliptic equation</p> <p><disp-formula> <label>0.1</label> <tex-math id=\"E0.1\"> \\begin{document}$ \\begin{equation} \\left\\{ \\begin{array}{ll} -\\Delta u = u^{q(x)-1}, &\\ \\ {\\mbox{in}}\\ \\ B_1,\\\\ u>0, &\\ \\ {\\mbox{in}}\\ \\ B_1,\\\\ u = 0, &\\ \\ {\\mbox{in}}\\ \\ \\partial B_1, \\end{array} \\right. \\end{equation} $\\end{document} </tex-math></disp-formula></p> <p>where $ B_1 $ is the unit ball in $ \\mathbb{R}^N(N\\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\\leq q(x) < 2^* = \\frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a positive radial solution for semilinear elliptic problem involving variable exponent\",\"authors\":\"Changmu Chu, Shan Li, H. Suo\",\"doi\":\"10.3934/era.2023125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>This paper consider that the following semilinear elliptic equation</p> <p><disp-formula> <label>0.1</label> <tex-math id=\\\"E0.1\\\"> \\\\begin{document}$ \\\\begin{equation} \\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u = u^{q(x)-1}, &\\\\ \\\\ {\\\\mbox{in}}\\\\ \\\\ B_1,\\\\\\\\ u>0, &\\\\ \\\\ {\\\\mbox{in}}\\\\ \\\\ B_1,\\\\\\\\ u = 0, &\\\\ \\\\ {\\\\mbox{in}}\\\\ \\\\ \\\\partial B_1, \\\\end{array} \\\\right. \\\\end{equation} $\\\\end{document} </tex-math></disp-formula></p> <p>where $ B_1 $ is the unit ball in $ \\\\mathbb{R}^N(N\\\\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\\\\leq q(x) < 2^* = \\\\frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.</p></abstract>\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023125\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023125","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
This paper consider that the following semilinear elliptic equation 0.1 \begin{document}$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u = u^{q(x)-1}, &\ \ {\mbox{in}}\ \ B_1,\\ u>0, &\ \ {\mbox{in}}\ \ B_1,\\ u = 0, &\ \ {\mbox{in}}\ \ \partial B_1, \end{array} \right. \end{equation} $\end{document} where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.
where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.