求解H_+ -矩阵线性互补问题的一种预条件模矩阵分裂新方法

IF 1 4区 数学 Q1 MATHEMATICS
D. Yu, Yifei Yuan, Yiming Zhang
{"title":"求解H_+ -矩阵线性互补问题的一种预条件模矩阵分裂新方法","authors":"D. Yu, Yifei Yuan, Yiming Zhang","doi":"10.3934/era.2023007","DOIUrl":null,"url":null,"abstract":"For solving the linear complementarity problem (LCP), we propose a preconditioned new modulus-based matrix splitting (PNMMS) iteration method by extending the state-of-the-art new modulus-based matrix splitting (NMMS) iteration method to a more general framework with a customized preconditioner. We devise a generalized preconditioner that is associated with both $ H_+ $-matrix $ A $ and vector $ q $ of the LCP. The convergence analysis is conducted under some mild conditions. In particular, we provide a comparison theorem to theoretically show the PNMMS method accelerates the convergence rate. Numerical experiments further illustrate that the PNMMS method is efficient and has better performance for solving the large and sparse LCP.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"365 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of $ H_+ $-matrices\",\"authors\":\"D. Yu, Yifei Yuan, Yiming Zhang\",\"doi\":\"10.3934/era.2023007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For solving the linear complementarity problem (LCP), we propose a preconditioned new modulus-based matrix splitting (PNMMS) iteration method by extending the state-of-the-art new modulus-based matrix splitting (NMMS) iteration method to a more general framework with a customized preconditioner. We devise a generalized preconditioner that is associated with both $ H_+ $-matrix $ A $ and vector $ q $ of the LCP. The convergence analysis is conducted under some mild conditions. In particular, we provide a comparison theorem to theoretically show the PNMMS method accelerates the convergence rate. Numerical experiments further illustrate that the PNMMS method is efficient and has better performance for solving the large and sparse LCP.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"365 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决线性互补问题(LCP),我们提出了一种预条件的新模矩阵分裂(PNMMS)迭代方法,通过定制预条件将最新的新模矩阵分裂(NMMS)迭代方法扩展到更一般的框架。我们设计了一个与LCP的$ H_+ $-矩阵$ a $和向量$ q $相关联的广义预条件。在一些温和的条件下进行了收敛性分析。特别地,我们提供了一个比较定理,从理论上证明了PNMMS方法加快了收敛速度。数值实验进一步证明了PNMMS方法的有效性,对于求解大型稀疏LCP具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of $ H_+ $-matrices
For solving the linear complementarity problem (LCP), we propose a preconditioned new modulus-based matrix splitting (PNMMS) iteration method by extending the state-of-the-art new modulus-based matrix splitting (NMMS) iteration method to a more general framework with a customized preconditioner. We devise a generalized preconditioner that is associated with both $ H_+ $-matrix $ A $ and vector $ q $ of the LCP. The convergence analysis is conducted under some mild conditions. In particular, we provide a comparison theorem to theoretically show the PNMMS method accelerates the convergence rate. Numerical experiments further illustrate that the PNMMS method is efficient and has better performance for solving the large and sparse LCP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信