{"title":"从无性系种子植物的后代数估计适合度","authors":"L. Aarssen","doi":"10.4033/IEE.2014.7.16.C","DOIUrl":null,"url":null,"abstract":"Should asexual/vegetative offspring be counted in estimates of evolutionary fitness in seed plants? The answer it seems remains debatable among evolutionary ecologists. Arguably, however, the answer is yes when fitness is ascribed strictly to resident genes/alleles, in terms of their survival—through copying and transmission success—over time. This success results only because sporophyte ‘rooted units’ make more ‘rooted units’—not primarily in terms of leaving descendent ‘individuals’, but more fundamentally as carriers of gene/allele copies in perpetuity. The ‘rooted-unit’ (RU) is identified by root and shoot tissue integrated through an essential, and distinctly local, vascular transition. It thus represents a functional and practical circumscription for enumerating individual ‘offspring’ that applies equally to those derived from zygotes, or from clonality. This ‘binary’ nature of fitness estimation in seed plants remains legitimate despite that clonal RU offspring are normally all genotypically identical; the same is true of zygotic/seed-derived RU offspring produced by apomixis or from inbred sexual lines (and somatic mutation sometimes means that clonal offspring are not, in fact, genotypically identical). Neither is this fitness estimation compromised if a young clonal RU offspring, during establishment, temporarily receives resource translocation from connection to a parental RU; the same is true for immature zygotic offspring that receive maternal resources within the seed, via female gametophyte or endosperm/ perisperm tissue. Finally, the above fitness estimate also remains uncompromised even if there is facilitation between mature neighbouring RUs that remain connected with lifetime physiological integration; analogous facilitation also occurs routinely between neighbouring RUs in aclonal species.","PeriodicalId":42755,"journal":{"name":"Ideas in Ecology and Evolution","volume":"7 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2014-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Estimating fitness from offspring counts in clonal seed plants\",\"authors\":\"L. Aarssen\",\"doi\":\"10.4033/IEE.2014.7.16.C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Should asexual/vegetative offspring be counted in estimates of evolutionary fitness in seed plants? The answer it seems remains debatable among evolutionary ecologists. Arguably, however, the answer is yes when fitness is ascribed strictly to resident genes/alleles, in terms of their survival—through copying and transmission success—over time. This success results only because sporophyte ‘rooted units’ make more ‘rooted units’—not primarily in terms of leaving descendent ‘individuals’, but more fundamentally as carriers of gene/allele copies in perpetuity. The ‘rooted-unit’ (RU) is identified by root and shoot tissue integrated through an essential, and distinctly local, vascular transition. It thus represents a functional and practical circumscription for enumerating individual ‘offspring’ that applies equally to those derived from zygotes, or from clonality. This ‘binary’ nature of fitness estimation in seed plants remains legitimate despite that clonal RU offspring are normally all genotypically identical; the same is true of zygotic/seed-derived RU offspring produced by apomixis or from inbred sexual lines (and somatic mutation sometimes means that clonal offspring are not, in fact, genotypically identical). Neither is this fitness estimation compromised if a young clonal RU offspring, during establishment, temporarily receives resource translocation from connection to a parental RU; the same is true for immature zygotic offspring that receive maternal resources within the seed, via female gametophyte or endosperm/ perisperm tissue. Finally, the above fitness estimate also remains uncompromised even if there is facilitation between mature neighbouring RUs that remain connected with lifetime physiological integration; analogous facilitation also occurs routinely between neighbouring RUs in aclonal species.\",\"PeriodicalId\":42755,\"journal\":{\"name\":\"Ideas in Ecology and Evolution\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2014-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ideas in Ecology and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4033/IEE.2014.7.16.C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ideas in Ecology and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4033/IEE.2014.7.16.C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Estimating fitness from offspring counts in clonal seed plants
Should asexual/vegetative offspring be counted in estimates of evolutionary fitness in seed plants? The answer it seems remains debatable among evolutionary ecologists. Arguably, however, the answer is yes when fitness is ascribed strictly to resident genes/alleles, in terms of their survival—through copying and transmission success—over time. This success results only because sporophyte ‘rooted units’ make more ‘rooted units’—not primarily in terms of leaving descendent ‘individuals’, but more fundamentally as carriers of gene/allele copies in perpetuity. The ‘rooted-unit’ (RU) is identified by root and shoot tissue integrated through an essential, and distinctly local, vascular transition. It thus represents a functional and practical circumscription for enumerating individual ‘offspring’ that applies equally to those derived from zygotes, or from clonality. This ‘binary’ nature of fitness estimation in seed plants remains legitimate despite that clonal RU offspring are normally all genotypically identical; the same is true of zygotic/seed-derived RU offspring produced by apomixis or from inbred sexual lines (and somatic mutation sometimes means that clonal offspring are not, in fact, genotypically identical). Neither is this fitness estimation compromised if a young clonal RU offspring, during establishment, temporarily receives resource translocation from connection to a parental RU; the same is true for immature zygotic offspring that receive maternal resources within the seed, via female gametophyte or endosperm/ perisperm tissue. Finally, the above fitness estimate also remains uncompromised even if there is facilitation between mature neighbouring RUs that remain connected with lifetime physiological integration; analogous facilitation also occurs routinely between neighbouring RUs in aclonal species.