具有密度依赖粘度的Navier-Stokes-Korteweg系统的渐近极限

Q3 Mathematics
Jianwei Yang, Peng Cheng, Yudong Wang
{"title":"具有密度依赖粘度的Navier-Stokes-Korteweg系统的渐近极限","authors":"Jianwei Yang, Peng Cheng, Yudong Wang","doi":"10.3934/ERA.2015.22.20","DOIUrl":null,"url":null,"abstract":"In this paper, we study a combined incompressible and vanishing \ncapillarity limit in the barotropic compressible \nNavier-Stokes-Korteweg equations for weak solutions. For well \nprepared initial data, the convergence of solutions of the \ncompressible Navier-Stokes-Korteweg equations to the \nsolutions of the incompressible Navier-Stokes equation are justified \nrigorously by adapting the modulated energy method. Furthermore, the \ncorresponding convergence rates are also obtained.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"22 1","pages":"20-31"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity\",\"authors\":\"Jianwei Yang, Peng Cheng, Yudong Wang\",\"doi\":\"10.3934/ERA.2015.22.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a combined incompressible and vanishing \\ncapillarity limit in the barotropic compressible \\nNavier-Stokes-Korteweg equations for weak solutions. For well \\nprepared initial data, the convergence of solutions of the \\ncompressible Navier-Stokes-Korteweg equations to the \\nsolutions of the incompressible Navier-Stokes equation are justified \\nrigorously by adapting the modulated energy method. Furthermore, the \\ncorresponding convergence rates are also obtained.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"22 1\",\"pages\":\"20-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2015.22.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2015.22.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了正压可压缩Navier-Stokes-Korteweg方程弱解的不可压缩和消失毛细极限的组合。对于准备好的初始数据,采用调制能量法严格证明了可压缩Navier-Stokes- korteweg方程的解收敛于不可压缩Navier-Stokes方程的解。此外,还得到了相应的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity
In this paper, we study a combined incompressible and vanishing capillarity limit in the barotropic compressible Navier-Stokes-Korteweg equations for weak solutions. For well prepared initial data, the convergence of solutions of the compressible Navier-Stokes-Korteweg equations to the solutions of the incompressible Navier-Stokes equation are justified rigorously by adapting the modulated energy method. Furthermore, the corresponding convergence rates are also obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信