近似loeble - komlos - sos猜想及稀疏图中的嵌入树

Q3 Mathematics
J. Hladký, Diana Piguet, M. Simonovits, M. Stein, E. Szemerédi
{"title":"近似loeble - komlos - sos猜想及稀疏图中的嵌入树","authors":"J. Hladký, Diana Piguet, M. Simonovits, M. Stein, E. Szemerédi","doi":"10.3934/era.2015.22.1","DOIUrl":null,"url":null,"abstract":"Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices \nof degree at least $k$ contains each tree $T$ of order $k+1$ as a \nsubgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of $k$. \n \nFor our proof, we use a structural decomposition which can be seen as an analogue of Szemeredi's regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of $G$ to embed a given tree $T$. \n \nThe purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"8 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"THE APPROXIMATE LOEBL-KOMLOS-SOS CONJECTURE AND EMBEDDING TREES IN SPARSE GRAPHS\",\"authors\":\"J. Hladký, Diana Piguet, M. Simonovits, M. Stein, E. Szemerédi\",\"doi\":\"10.3934/era.2015.22.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices \\nof degree at least $k$ contains each tree $T$ of order $k+1$ as a \\nsubgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of $k$. \\n \\nFor our proof, we use a structural decomposition which can be seen as an analogue of Szemeredi's regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of $G$ to embed a given tree $T$. \\n \\nThe purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"8 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2015.22.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2015.22.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

摘要

Loebl, Komlos和Sos推测,每个$n$顶点的图$G$至少有$n/2$顶点的度至少$k$包含$k+1$阶的树$T$作为子图。我们给出了k值较大时这个猜想的近似证明的一个草图。对于我们的证明,我们使用了一个结构分解,它可以看作是对可能非常稀疏的图的Szemeredi正则性引理的类似物。有了这个工具,每个图都可以分解成四个部分:一组大程度的顶点、正则对(在正则引理的意义上)和另外两个对象,每个对象都表现出一定的扩展特性。然后我们利用$G$的每个部分的属性来嵌入给定的树$T$。本笔记的目的是强调我们证明的关键步骤。详情可参阅[arXiv:1211.3050]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE APPROXIMATE LOEBL-KOMLOS-SOS CONJECTURE AND EMBEDDING TREES IN SPARSE GRAPHS
Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of $k$. For our proof, we use a structural decomposition which can be seen as an analogue of Szemeredi's regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of $G$ to embed a given tree $T$. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信