伪欧几里德度量多面体等距嵌入的扩展

Q3 Mathematics
Pavel Galashin, V. Zolotov
{"title":"伪欧几里德度量多面体等距嵌入的扩展","authors":"Pavel Galashin, V. Zolotov","doi":"10.3934/era.2016.23.001","DOIUrl":null,"url":null,"abstract":"We extend the results of B. Minemyer by showing that any indefinite metric polyhedron (either compact or not) with the vertex degree bounded from above admits an isometric simplicial embedding into a Minkowski space of the lowest possible dimension. We provide a simple algorithm for constructing such embeddings. We also show that every partial simplicial isometric embedding of such space in general position extends to a simplicial isometric embedding of the whole space.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"23 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extensions of isometric embeddings of pseudo-Euclidean metric polyhedra\",\"authors\":\"Pavel Galashin, V. Zolotov\",\"doi\":\"10.3934/era.2016.23.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the results of B. Minemyer by showing that any indefinite metric polyhedron (either compact or not) with the vertex degree bounded from above admits an isometric simplicial embedding into a Minkowski space of the lowest possible dimension. We provide a simple algorithm for constructing such embeddings. We also show that every partial simplicial isometric embedding of such space in general position extends to a simplicial isometric embedding of the whole space.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"23 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2016.23.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2016.23.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们扩展了B. Minemyer的结果,证明了顶点度从上面有界的任何不定度量多面体(紧或不紧)都可以等距简单嵌入到尽可能低维的Minkowski空间中。我们提供了一个简单的算法来构造这样的嵌入。我们还证明了这种空间在一般位置上的每一个部分简单等距嵌入都可以扩展到整个空间的简单等距嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions of isometric embeddings of pseudo-Euclidean metric polyhedra
We extend the results of B. Minemyer by showing that any indefinite metric polyhedron (either compact or not) with the vertex degree bounded from above admits an isometric simplicial embedding into a Minkowski space of the lowest possible dimension. We provide a simple algorithm for constructing such embeddings. We also show that every partial simplicial isometric embedding of such space in general position extends to a simplicial isometric embedding of the whole space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信