具有相同零点的调和函数的梯度估计

Q3 Mathematics
D. Mangoubi
{"title":"具有相同零点的调和函数的梯度估计","authors":"D. Mangoubi","doi":"10.3934/era.2014.21.62","DOIUrl":null,"url":null,"abstract":"Let $u, v$ be two harmonic functions in $\\{|z|<2\\}\\subset\\mathbb{C}$ \nwhich have exactly the same set $Z$ of zeros. \nWe observe that $\\big|\\nabla\\log |u/v|\\big|$ is bounded in the unit disk \nby a constant which depends on $Z$ only. In case $Z=\\emptyset$ this goes back \nto Li-Yau's gradient estimate for positive harmonic functions. \nThe general boundary Harnack principle gives \nonly Holder estimates on $\\log |u/v|$.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"21 1","pages":"62-71"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A gradient estimate for harmonic functions sharing the same zeros\",\"authors\":\"D. Mangoubi\",\"doi\":\"10.3934/era.2014.21.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $u, v$ be two harmonic functions in $\\\\{|z|<2\\\\}\\\\subset\\\\mathbb{C}$ \\nwhich have exactly the same set $Z$ of zeros. \\nWe observe that $\\\\big|\\\\nabla\\\\log |u/v|\\\\big|$ is bounded in the unit disk \\nby a constant which depends on $Z$ only. In case $Z=\\\\emptyset$ this goes back \\nto Li-Yau's gradient estimate for positive harmonic functions. \\nThe general boundary Harnack principle gives \\nonly Holder estimates on $\\\\log |u/v|$.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"62-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2014.21.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2014.21.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

设$u, v$为$\{|z|<2\}\subset\mathbb{C}$中的两个调和函数它们具有完全相同的零集$Z$。我们观察到$\big|\nabla\log |u/v|\big|$在单位圆盘中由一个常数限定,该常数仅取决于$Z$。在$Z=\emptyset$的情况下,这又回到了Li-Yau对正调和函数的梯度估计。一般边界哈纳克原理只给出$\log |u/v|$上的Holder估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gradient estimate for harmonic functions sharing the same zeros
Let $u, v$ be two harmonic functions in $\{|z|<2\}\subset\mathbb{C}$ which have exactly the same set $Z$ of zeros. We observe that $\big|\nabla\log |u/v|\big|$ is bounded in the unit disk by a constant which depends on $Z$ only. In case $Z=\emptyset$ this goes back to Li-Yau's gradient estimate for positive harmonic functions. The general boundary Harnack principle gives only Holder estimates on $\log |u/v|$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信