允许$\gamma-$谱$\rho-$膨胀的对数模代数的算子表示

Q3 Mathematics
A. Juratoni, F. Pater, O. Bundau
{"title":"允许$\\gamma-$谱$\\rho-$膨胀的对数模代数的算子表示","authors":"A. Juratoni, F. Pater, O. Bundau","doi":"10.3934/ERA.2012.19.49","DOIUrl":null,"url":null,"abstract":"This paper deals with some semi-spectral representations of \nlogmodular algebras. More exactly, we characterize such \nrepresentations by the corresponding scalar semi-spectral measures. \nIn the case of a logmodular algebra we obtain, for $0<\\rho \\leq 1,$ \nseveral results which generalize the corresponding results of \nFoias-Suciu [2] in the case $\\rho =1.$","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"19 1","pages":"49-57"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator representations of logmodular algebras which admit $\\\\gamma-$spectral $\\\\rho-$dilations\",\"authors\":\"A. Juratoni, F. Pater, O. Bundau\",\"doi\":\"10.3934/ERA.2012.19.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with some semi-spectral representations of \\nlogmodular algebras. More exactly, we characterize such \\nrepresentations by the corresponding scalar semi-spectral measures. \\nIn the case of a logmodular algebra we obtain, for $0<\\\\rho \\\\leq 1,$ \\nseveral results which generalize the corresponding results of \\nFoias-Suciu [2] in the case $\\\\rho =1.$\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"19 1\",\"pages\":\"49-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2012.19.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2012.19.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论对数模代数的一些半谱表示。更确切地说,我们用相应的标量半谱度量来表征这种表示。对于对数模代数,我们得到了$0<\rho \leq 1,$的几个结果,推广了Foias-Suciu[2]在这种情况下的相应结果 $\rho =1.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator representations of logmodular algebras which admit $\gamma-$spectral $\rho-$dilations
This paper deals with some semi-spectral representations of logmodular algebras. More exactly, we characterize such representations by the corresponding scalar semi-spectral measures. In the case of a logmodular algebra we obtain, for $0<\rho \leq 1,$ several results which generalize the corresponding results of Foias-Suciu [2] in the case $\rho =1.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信