{"title":"Alexandrov空间的极值子集数与刚性","authors":"N. Lebedeva","doi":"10.3934/ERA.2014.21.120","DOIUrl":null,"url":null,"abstract":"In this paper we announce the following result. We show that any $n$-dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of $\\mathbb{R}^n$ by an action of a crystallographic group. We describe all such actions. We start with a history, results and open questions concerning estimates on the number of extremal subsets in Alexandrov spaces. Then we give the plan of the proof of our result; the complete proof will published elsewhere.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"44 1","pages":"120-125"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Number of extremal subsets in Alexandrov spaces and rigidity\",\"authors\":\"N. Lebedeva\",\"doi\":\"10.3934/ERA.2014.21.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we announce the following result. We show that any $n$-dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of $\\\\mathbb{R}^n$ by an action of a crystallographic group. We describe all such actions. We start with a history, results and open questions concerning estimates on the number of extremal subsets in Alexandrov spaces. Then we give the plan of the proof of our result; the complete proof will published elsewhere.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"44 1\",\"pages\":\"120-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2014.21.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2014.21.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Number of extremal subsets in Alexandrov spaces and rigidity
In this paper we announce the following result. We show that any $n$-dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of $\mathbb{R}^n$ by an action of a crystallographic group. We describe all such actions. We start with a history, results and open questions concerning estimates on the number of extremal subsets in Alexandrov spaces. Then we give the plan of the proof of our result; the complete proof will published elsewhere.
期刊介绍:
Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication.
ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007