李型群,顶点代数,和模月光

Q3 Mathematics
R. Griess, C. Lam
{"title":"李型群,顶点代数,和模月光","authors":"R. Griess, C. Lam","doi":"10.3934/ERA.2014.21.167","DOIUrl":null,"url":null,"abstract":"We use recent work on integral forms in vertex operator algebras to construct vertex algebras over general commutative rings and Chevalley groups acting on them as vertex algebra automorphisms. \nIn this way, we get series of vertex algebras over fields whose automorphism groups are essentially those Chevalley groups (actually, an exact statement depends on the field and involves upwards extensions of these groups by outer diagonal and graph automorphisms). In particular, given a prime power $q$, we realize each finite simple group which is a Chevalley or Steinberg variations over $\\mathbb{F}_q$ as \"most of'' the full automorphism group of a vertex algebra over $\\mathbb{F}_q$. \nThese finite simple groups are \n\\[ A_n(q), B_n(q), C_n(q), D_n(q), E_6(q), E_7(q), E_8(q), F_4(q), G_2(q) \\] \n\\[ \\text{and } ^{2}A_n(q), ^{2}D_n(q), ^{3}D_4(q), ^{2}E_6(q), \\] \nwhere $q$ is a prime power. \n \nAlso, we define certain reduced VAs. In characteristics 2 and 3, \nthere are exceptionally large automorphism groups. A covering algebra idea of Frohardt and Griess for Lie algebras is applied to \nthe vertex algebra situation. \n \nWe use integral form and covering procedures for vertex algebras to complete the modular moonshine program of Borcherds and \nRyba for proving an embedding of the sporadic group $F_3$ of order $2^{15}3^{10}5^3 7^2 13{\\cdot }19{\\cdot} 31$ in $E_8(3)$.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"21 1","pages":"167-176"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Groups of Lie type, vertex algebras, and modular moonshine\",\"authors\":\"R. Griess, C. Lam\",\"doi\":\"10.3934/ERA.2014.21.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use recent work on integral forms in vertex operator algebras to construct vertex algebras over general commutative rings and Chevalley groups acting on them as vertex algebra automorphisms. \\nIn this way, we get series of vertex algebras over fields whose automorphism groups are essentially those Chevalley groups (actually, an exact statement depends on the field and involves upwards extensions of these groups by outer diagonal and graph automorphisms). In particular, given a prime power $q$, we realize each finite simple group which is a Chevalley or Steinberg variations over $\\\\mathbb{F}_q$ as \\\"most of'' the full automorphism group of a vertex algebra over $\\\\mathbb{F}_q$. \\nThese finite simple groups are \\n\\\\[ A_n(q), B_n(q), C_n(q), D_n(q), E_6(q), E_7(q), E_8(q), F_4(q), G_2(q) \\\\] \\n\\\\[ \\\\text{and } ^{2}A_n(q), ^{2}D_n(q), ^{3}D_4(q), ^{2}E_6(q), \\\\] \\nwhere $q$ is a prime power. \\n \\nAlso, we define certain reduced VAs. In characteristics 2 and 3, \\nthere are exceptionally large automorphism groups. A covering algebra idea of Frohardt and Griess for Lie algebras is applied to \\nthe vertex algebra situation. \\n \\nWe use integral form and covering procedures for vertex algebras to complete the modular moonshine program of Borcherds and \\nRyba for proving an embedding of the sporadic group $F_3$ of order $2^{15}3^{10}5^3 7^2 13{\\\\cdot }19{\\\\cdot} 31$ in $E_8(3)$.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"167-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2014.21.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2014.21.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

摘要

我们利用最近关于顶点算子代数的积分形式的研究,构造了一般交换环上的顶点代数和作用于它们上的切瓦利群作为顶点代数自同构。这样,我们就得到了域上的一系列顶点代数,这些顶点代数的自同构群本质上是那些Chevalley群(实际上,一个精确的表述取决于域,并且涉及到这些群通过外部对角自同构和图自同构向上扩展)。特别地,在给定一个素数幂$q$的情况下,我们将$\mathbb{F}_q$上的每一个Chevalley或Steinberg变分的有限单群视为$\mathbb{F}_q$上顶点代数的完全自同构群的“大部分”。这些有限单群是\[ A_n(q), B_n(q), C_n(q), D_n(q), E_6(q), E_7(q), E_8(q), F_4(q), G_2(q) \]\[ \text{and } ^{2}A_n(q), ^{2}D_n(q), ^{3}D_4(q), ^{2}E_6(q), \],其中$q$是素数幂。此外,我们还定义了某些简化的VAs。在特征2和特征3中,有特别大的自同构群。将Frohardt和Griess关于李代数的覆盖代数思想应用于顶点代数问题。我们利用顶点代数的积分形式和覆盖过程,完成了Borcherds和Ryba的模块化moonshine程序,证明了$E_8(3)$中$2^{15}3^{10}5^3 7^2 13{\cdot }19{\cdot} 31$阶的散散群$F_3$的嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups of Lie type, vertex algebras, and modular moonshine
We use recent work on integral forms in vertex operator algebras to construct vertex algebras over general commutative rings and Chevalley groups acting on them as vertex algebra automorphisms. In this way, we get series of vertex algebras over fields whose automorphism groups are essentially those Chevalley groups (actually, an exact statement depends on the field and involves upwards extensions of these groups by outer diagonal and graph automorphisms). In particular, given a prime power $q$, we realize each finite simple group which is a Chevalley or Steinberg variations over $\mathbb{F}_q$ as "most of'' the full automorphism group of a vertex algebra over $\mathbb{F}_q$. These finite simple groups are \[ A_n(q), B_n(q), C_n(q), D_n(q), E_6(q), E_7(q), E_8(q), F_4(q), G_2(q) \] \[ \text{and } ^{2}A_n(q), ^{2}D_n(q), ^{3}D_4(q), ^{2}E_6(q), \] where $q$ is a prime power. Also, we define certain reduced VAs. In characteristics 2 and 3, there are exceptionally large automorphism groups. A covering algebra idea of Frohardt and Griess for Lie algebras is applied to the vertex algebra situation. We use integral form and covering procedures for vertex algebras to complete the modular moonshine program of Borcherds and Ryba for proving an embedding of the sporadic group $F_3$ of order $2^{15}3^{10}5^3 7^2 13{\cdot }19{\cdot} 31$ in $E_8(3)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信