极大极小泛型子流形$\mathbf{M^5 \子集\mathbb{C}^4}$上的正则Cartan连接

Q3 Mathematics
M. Sabzevari, J. Merker, Samuel Pocchiola
{"title":"极大极小泛型子流形$\\mathbf{M^5 \\子集\\mathbb{C}^4}$上的正则Cartan连接","authors":"M. Sabzevari, J. Merker, Samuel Pocchiola","doi":"10.3934/ERA.2014.21.153","DOIUrl":null,"url":null,"abstract":"On a real analytic $5$-dimensional CR-generic submanifold \n$M^5 \\subset \\mathbb{C}^4$ of codimension $3$ hence of CR dimension $1$, \nwhich enjoys the generically satisfied nondegeneracy condition \n\\begin{align*} \n {\\bf 5} \n &= \\text{rank}_\\mathbb{C} \\big( \n T^{1,0}M+T^{0,1}M + \n \\big[T^{1,0}M,\\,T^{0,1}M\\big] \\,+ \n \\\\&\\qquad \n + \\big[T^{1,0}M,\\,[T^{1,0}M,T^{0,1}M]\\big] \n + \\big[T^{0,1}M,\\,[T^{1,0}M,T^{0,1}M]\\big] \\big), \n\\end{align*} \na canonical Cartan connection is constructed after reduction \nto a certain partially explicit $\\{ e\\}$-structure \nof the concerned local biholomorphic equivalence problem.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"21 1","pages":"153-166"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Canonical Cartan connections on maximally minimal generic submanifolds $\\\\mathbf{M^5 \\\\subset \\\\mathbb{C}^4}$\",\"authors\":\"M. Sabzevari, J. Merker, Samuel Pocchiola\",\"doi\":\"10.3934/ERA.2014.21.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a real analytic $5$-dimensional CR-generic submanifold \\n$M^5 \\\\subset \\\\mathbb{C}^4$ of codimension $3$ hence of CR dimension $1$, \\nwhich enjoys the generically satisfied nondegeneracy condition \\n\\\\begin{align*} \\n {\\\\bf 5} \\n &= \\\\text{rank}_\\\\mathbb{C} \\\\big( \\n T^{1,0}M+T^{0,1}M + \\n \\\\big[T^{1,0}M,\\\\,T^{0,1}M\\\\big] \\\\,+ \\n \\\\\\\\&\\\\qquad \\n + \\\\big[T^{1,0}M,\\\\,[T^{1,0}M,T^{0,1}M]\\\\big] \\n + \\\\big[T^{0,1}M,\\\\,[T^{1,0}M,T^{0,1}M]\\\\big] \\\\big), \\n\\\\end{align*} \\na canonical Cartan connection is constructed after reduction \\nto a certain partially explicit $\\\\{ e\\\\}$-structure \\nof the concerned local biholomorphic equivalence problem.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"153-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2014.21.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2014.21.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

在实解析函数上 $5$-维cr -一般子流形 $M^5 \subset \mathbb{C}^4$ 余维的 $3$ CR维的因此 $1$,它具有一般满足的非简并性条件 \begin{align*} {\bf 5} &= \text{rank}_\mathbb{C} \big( T^{1,0}M+T^{0,1}M + \big[T^{1,0}M,\,T^{0,1}M\big] \,+ \\&\qquad + \big[T^{1,0}M,\,[T^{1,0}M,T^{0,1}M]\big] + \big[T^{0,1}M,\,[T^{1,0}M,T^{0,1}M]\big] \big), \end{align*} 一个典型的Cartan连接是在约简成一定的部分显式后构造的 $\{ e\}$局部生物全纯等价问题的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical Cartan connections on maximally minimal generic submanifolds $\mathbf{M^5 \subset \mathbb{C}^4}$
On a real analytic $5$-dimensional CR-generic submanifold $M^5 \subset \mathbb{C}^4$ of codimension $3$ hence of CR dimension $1$, which enjoys the generically satisfied nondegeneracy condition \begin{align*} {\bf 5} &= \text{rank}_\mathbb{C} \big( T^{1,0}M+T^{0,1}M + \big[T^{1,0}M,\,T^{0,1}M\big] \,+ \\&\qquad + \big[T^{1,0}M,\,[T^{1,0}M,T^{0,1}M]\big] + \big[T^{0,1}M,\,[T^{1,0}M,T^{0,1}M]\big] \big), \end{align*} a canonical Cartan connection is constructed after reduction to a certain partially explicit $\{ e\}$-structure of the concerned local biholomorphic equivalence problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信