Dixmier群和Calogero-Moser空间的子群

Q3 Mathematics
Y. Berest, A. Eshmatov, F. Eshmatov
{"title":"Dixmier群和Calogero-Moser空间的子群","authors":"Y. Berest, A. Eshmatov, F. Eshmatov","doi":"10.3934/ERA.2011.18.12","DOIUrl":null,"url":null,"abstract":"We describe the structure of the automorphism groups of algebras \nMorita equivalent to the first Weyl algebra $ A_1(k) $. \nIn particular, we give a geometric presentation for these groups in terms of amalgamated products, using the Bass-Serre theory of groups acting on graphs. A key role in our approach is played by a transitive action of the automorphism group of the free algebra $ k $ on the Calogero-Moser varieties $ \\CC_n $ defined in [5]. In the end, we propose a natural extension of the Dixmier Conjecture \nfor $ A_1(k) $ to the class of Morita equivalent algebras.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"18 1","pages":"12-21"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On subgroups of the Dixmier group and Calogero-Moser spaces\",\"authors\":\"Y. Berest, A. Eshmatov, F. Eshmatov\",\"doi\":\"10.3934/ERA.2011.18.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the structure of the automorphism groups of algebras \\nMorita equivalent to the first Weyl algebra $ A_1(k) $. \\nIn particular, we give a geometric presentation for these groups in terms of amalgamated products, using the Bass-Serre theory of groups acting on graphs. A key role in our approach is played by a transitive action of the automorphism group of the free algebra $ k $ on the Calogero-Moser varieties $ \\\\CC_n $ defined in [5]. In the end, we propose a natural extension of the Dixmier Conjecture \\nfor $ A_1(k) $ to the class of Morita equivalent algebras.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"18 1\",\"pages\":\"12-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2011.18.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2011.18.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了与第一Weyl代数等价的代数Morita自同构群的结构。特别地,我们利用群作用于图的Bass-Serre理论,用合并积的形式给出了这些群的几何表示。自由代数$ k $的自同构群对在[5]中定义的Calogero-Moser变元$ \CC_n $的传递作用在我们的方法中发挥了关键作用。最后,我们提出了$ A_1(k) $的Dixmier猜想到Morita等价代数类的一个自然推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On subgroups of the Dixmier group and Calogero-Moser spaces
We describe the structure of the automorphism groups of algebras Morita equivalent to the first Weyl algebra $ A_1(k) $. In particular, we give a geometric presentation for these groups in terms of amalgamated products, using the Bass-Serre theory of groups acting on graphs. A key role in our approach is played by a transitive action of the automorphism group of the free algebra $ k $ on the Calogero-Moser varieties $ \CC_n $ defined in [5]. In the end, we propose a natural extension of the Dixmier Conjecture for $ A_1(k) $ to the class of Morita equivalent algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信