非交换条件下的泛函微积分

Q3 Mathematics
F. Colombo, G. Gentili, I. Sabadini, D. Struppa
{"title":"非交换条件下的泛函微积分","authors":"F. Colombo, G. Gentili, I. Sabadini, D. Struppa","doi":"10.3934/ERA.2007.14.60","DOIUrl":null,"url":null,"abstract":"In this paper we announce the development of a functional calculus for operators defined on quaternionic Banach spaces. The definition is based on a new notion of slice regularity, see [6], and the key tools are a new resolvent operator and a new eigenvalue problem. This approach allows us to deal both with bounded and unbounded operators.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"14 1","pages":"60-68"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Functional Calculus in a Non Commutative Setting\",\"authors\":\"F. Colombo, G. Gentili, I. Sabadini, D. Struppa\",\"doi\":\"10.3934/ERA.2007.14.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we announce the development of a functional calculus for operators defined on quaternionic Banach spaces. The definition is based on a new notion of slice regularity, see [6], and the key tools are a new resolvent operator and a new eigenvalue problem. This approach allows us to deal both with bounded and unbounded operators.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"14 1\",\"pages\":\"60-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2007.14.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2007.14.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们宣布了四元数巴拿赫空间上定义的算子的泛函演算的发展。该定义基于切片正则性的新概念(见[6]),关键工具是一个新的可解算子和一个新的特征值问题。这种方法允许我们处理有界和无界操作符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Functional Calculus in a Non Commutative Setting
In this paper we announce the development of a functional calculus for operators defined on quaternionic Banach spaces. The definition is based on a new notion of slice regularity, see [6], and the key tools are a new resolvent operator and a new eigenvalue problem. This approach allows us to deal both with bounded and unbounded operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信