随机度量的标量曲率和q曲率

Q3 Mathematics
Y. Canzani, D. Jakobson, I. Wigman
{"title":"随机度量的标量曲率和q曲率","authors":"Y. Canzani, D. Jakobson, I. Wigman","doi":"10.3934/ERA.2010.17.43","DOIUrl":null,"url":null,"abstract":"We study Gauss curvature for random Riemannian metrics on a compact surface,\r\nlying in a fixed conformal class; our questions are motivated by comparison\r\ngeometry. We next consider analogous questions for the scalar curvature in\r\ndimension $n>2$, and for the $Q$-curvature of random Riemannian metrics.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"17 1","pages":"43-56"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scalar curvature and Q-curvature of random metrics\",\"authors\":\"Y. Canzani, D. Jakobson, I. Wigman\",\"doi\":\"10.3934/ERA.2010.17.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Gauss curvature for random Riemannian metrics on a compact surface,\\r\\nlying in a fixed conformal class; our questions are motivated by comparison\\r\\ngeometry. We next consider analogous questions for the scalar curvature in\\r\\ndimension $n>2$, and for the $Q$-curvature of random Riemannian metrics.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"17 1\",\"pages\":\"43-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2010.17.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2010.17.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

研究了紧曲面上随机黎曼度量的高斯曲率,该曲面属于固定共形类;我们的问题是由比较引起的。接下来我们考虑标量曲率维$n>2$和随机黎曼度量的$Q$曲率的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalar curvature and Q-curvature of random metrics
We study Gauss curvature for random Riemannian metrics on a compact surface, lying in a fixed conformal class; our questions are motivated by comparison geometry. We next consider analogous questions for the scalar curvature in dimension $n>2$, and for the $Q$-curvature of random Riemannian metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信