导数和熵:从$C^1(RR)$到$C(RR)$的唯一导数

Q3 Mathematics
Hermann Köenig, V. Milman
{"title":"导数和熵:从$C^1(RR)$到$C(RR)$的唯一导数","authors":"Hermann Köenig, V. Milman","doi":"10.3934/ERA.2011.18.54","DOIUrl":null,"url":null,"abstract":"Let $T:C^1(RR)\\to C(RR)$ be an operator satisfying the derivation equation $T(f\\cdot g)=(Tf)\\cdot g + f \\cdot (Tg),$ where $f,g\\in C^1(RR)$, and some weak additional assumption. Then $T$ must be of the form $(Tf)(x) = c(x) \\, f'(x) + d(x) \\, f(x) \\, \\ln |f(x)|$ for $f \\in C^1(RR), x \\in RR$, where $c, d \\in C(RR)$ are suitable continuous functions, with the convention $0 \\ln 0 = 0$. If the domain of $T$ is assumed to be $C(RR)$, then $c=0$ and $T$ is essentially given by the entropy function $f \\ln |f|$. We can also determine the solutions of the generalized derivation equation $T(f\\cdot g)=(Tf)\\cdot (A_1g) + (A_2f) \\cdot (Tg), $ where $f,g\\in C^1(RR)$, for operators $T:C^1(RR)\\to C(RR)$ and $A_1, A_2:C(RR)\\to C(RR)$ fulfilling some weak additional properties.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"18 1","pages":"54-60"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$\",\"authors\":\"Hermann Köenig, V. Milman\",\"doi\":\"10.3934/ERA.2011.18.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $T:C^1(RR)\\\\to C(RR)$ be an operator satisfying the derivation equation $T(f\\\\cdot g)=(Tf)\\\\cdot g + f \\\\cdot (Tg),$ where $f,g\\\\in C^1(RR)$, and some weak additional assumption. Then $T$ must be of the form $(Tf)(x) = c(x) \\\\, f'(x) + d(x) \\\\, f(x) \\\\, \\\\ln |f(x)|$ for $f \\\\in C^1(RR), x \\\\in RR$, where $c, d \\\\in C(RR)$ are suitable continuous functions, with the convention $0 \\\\ln 0 = 0$. If the domain of $T$ is assumed to be $C(RR)$, then $c=0$ and $T$ is essentially given by the entropy function $f \\\\ln |f|$. We can also determine the solutions of the generalized derivation equation $T(f\\\\cdot g)=(Tf)\\\\cdot (A_1g) + (A_2f) \\\\cdot (Tg), $ where $f,g\\\\in C^1(RR)$, for operators $T:C^1(RR)\\\\to C(RR)$ and $A_1, A_2:C(RR)\\\\to C(RR)$ fulfilling some weak additional properties.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"18 1\",\"pages\":\"54-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2011.18.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2011.18.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$T:C^1(RR)\到C(RR)$是一个满足微分方程$T(f\cdot g)=(Tf)\cdot g + f\cdot (Tg)的算子,$ where $f,g\in C^1(RR)$,以及一些弱附加假设。那么$T$必须是$(Tf)(x) = c(x) \, f'(x) + d(x) \, f(x) \, \ln |f(x)|$对于$f \in c ^1(RR), x \in RR$,其中$c, d \in c(RR)$是合适的连续函数,约定$0 \ln 0 = 0$。如果假设$T$的定义域为$C(RR)$,则$C =0$,而$T$本质上由熵函数$f \ln |f|$给出。我们还可以确定广义导数方程$T(f\cdot g)=(Tf)\cdot (A_1g) + (A_2f) \cdot (Tg)的解,$其中$f,g\in C^1(RR)$,对于算子$T:C^1(RR)\to C(RR)$和$A_1, A_2:C(RR)\to C(RR)$满足一些弱附加性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivative and entropy: the only derivations from $C^1(RR)$ to $C(RR)$
Let $T:C^1(RR)\to C(RR)$ be an operator satisfying the derivation equation $T(f\cdot g)=(Tf)\cdot g + f \cdot (Tg),$ where $f,g\in C^1(RR)$, and some weak additional assumption. Then $T$ must be of the form $(Tf)(x) = c(x) \, f'(x) + d(x) \, f(x) \, \ln |f(x)|$ for $f \in C^1(RR), x \in RR$, where $c, d \in C(RR)$ are suitable continuous functions, with the convention $0 \ln 0 = 0$. If the domain of $T$ is assumed to be $C(RR)$, then $c=0$ and $T$ is essentially given by the entropy function $f \ln |f|$. We can also determine the solutions of the generalized derivation equation $T(f\cdot g)=(Tf)\cdot (A_1g) + (A_2f) \cdot (Tg), $ where $f,g\in C^1(RR)$, for operators $T:C^1(RR)\to C(RR)$ and $A_1, A_2:C(RR)\to C(RR)$ fulfilling some weak additional properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信