自由莱布尼兹代数的Jordan元与左中心

Q3 Mathematics
A. Dzhumadil'daev
{"title":"自由莱布尼兹代数的Jordan元与左中心","authors":"A. Dzhumadil'daev","doi":"10.3934/ERA.2011.18.31","DOIUrl":null,"url":null,"abstract":"An element of a free Leibniz algebra is called Jordan if it belongs to a free Leibniz-Jordan subalgebra. Elements of the Jordan commutant of a free Leibniz algebra are called weak Jordan. We prove that an element of a free Leibniz algebra over a field of characteristic 0 is weak Jordan if and only if it is left-central. We show that free Leibniz algebra is an extension of a free Lie algebra by left-center. We find the dimensions of the homogeneous components of the Jordan commutant and the base of its multilinear part. We find criterion for an element of free Leibniz algebra to be Jordan.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"18 1","pages":"31-49"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Jordan elements and Left-Center of a Free Leibniz algebra\",\"authors\":\"A. Dzhumadil'daev\",\"doi\":\"10.3934/ERA.2011.18.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An element of a free Leibniz algebra is called Jordan if it belongs to a free Leibniz-Jordan subalgebra. Elements of the Jordan commutant of a free Leibniz algebra are called weak Jordan. We prove that an element of a free Leibniz algebra over a field of characteristic 0 is weak Jordan if and only if it is left-central. We show that free Leibniz algebra is an extension of a free Lie algebra by left-center. We find the dimensions of the homogeneous components of the Jordan commutant and the base of its multilinear part. We find criterion for an element of free Leibniz algebra to be Jordan.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"18 1\",\"pages\":\"31-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2011.18.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2011.18.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

如果一个自由莱布尼兹代数的元素属于一个自由莱布尼兹-乔丹子代数,则称它为乔丹。自由莱布尼兹代数的约当交换子的元素称为弱约当。证明特征为0的域上的自由莱布尼兹代数的一个元素是弱约当当且仅当它是左中心的。证明了自由莱布尼茨代数是自由李代数的左中心扩展。我们求出了Jordan交换子的齐次分量的维数及其多线性部分的底。我们找到了自由莱布尼兹代数的一个元素为Jordan的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jordan elements and Left-Center of a Free Leibniz algebra
An element of a free Leibniz algebra is called Jordan if it belongs to a free Leibniz-Jordan subalgebra. Elements of the Jordan commutant of a free Leibniz algebra are called weak Jordan. We prove that an element of a free Leibniz algebra over a field of characteristic 0 is weak Jordan if and only if it is left-central. We show that free Leibniz algebra is an extension of a free Lie algebra by left-center. We find the dimensions of the homogeneous components of the Jordan commutant and the base of its multilinear part. We find criterion for an element of free Leibniz algebra to be Jordan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信