关于双变JLO循环的解析性

Q3 Mathematics
M. Benameur, A. L. Carey
{"title":"关于双变JLO循环的解析性","authors":"M. Benameur, A. L. Carey","doi":"10.3934/ERA.2009.16.37","DOIUrl":null,"url":null,"abstract":"The goal of this note is to outline a proof that, for any l $\\geq 0$, the JLO bivariant cocycle associated with a family of Dirac type operators along a smooth fibration $M\\to B$ over the pair of algebras $(C^\\infty (M), C^\\infty(B))$, is entire when we endow $C^\\infty(M)$ with the $C^{l+1}$ topology and $C^\\infty(B)$ with the $C^{l}$ topology. As a corollary, we deduce that this cocycle is analytic when we consider the Frechet smooth topologies on $C^\\infty(M)$ and $C^\\infty(B)$.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"16 1","pages":"37-43"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the analyticity of the bivariant JLO cocycle\",\"authors\":\"M. Benameur, A. L. Carey\",\"doi\":\"10.3934/ERA.2009.16.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this note is to outline a proof that, for any l $\\\\geq 0$, the JLO bivariant cocycle associated with a family of Dirac type operators along a smooth fibration $M\\\\to B$ over the pair of algebras $(C^\\\\infty (M), C^\\\\infty(B))$, is entire when we endow $C^\\\\infty(M)$ with the $C^{l+1}$ topology and $C^\\\\infty(B)$ with the $C^{l}$ topology. As a corollary, we deduce that this cocycle is analytic when we consider the Frechet smooth topologies on $C^\\\\infty(M)$ and $C^\\\\infty(B)$.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"16 1\",\"pages\":\"37-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2009.16.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2009.16.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是概述一个证明,当我们赋予$C^\infty(M)$以$C^{l+1}$拓扑和$C^\infty(B)$以$C^{l}$拓扑时,对于任意l $\geq 0$,在代数对$(C^\infty (M), C^\infty(B))$上沿光滑纤维$M\to B$与Dirac型算子族相关联的JLO双变环是完整的。作为推论,当我们考虑$C^\infty(M)$和$C^\infty(B)$上的Frechet光滑拓扑时,我们推断出这个循环是解析的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the analyticity of the bivariant JLO cocycle
The goal of this note is to outline a proof that, for any l $\geq 0$, the JLO bivariant cocycle associated with a family of Dirac type operators along a smooth fibration $M\to B$ over the pair of algebras $(C^\infty (M), C^\infty(B))$, is entire when we endow $C^\infty(M)$ with the $C^{l+1}$ topology and $C^\infty(B)$ with the $C^{l}$ topology. As a corollary, we deduce that this cocycle is analytic when we consider the Frechet smooth topologies on $C^\infty(M)$ and $C^\infty(B)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信