与面对称多面体相关的光滑Fano环变异的量子上同调的半简单性

Q3 Mathematics
Benjamin P. Mirabelli, Maksim Maydanskiy
{"title":"与面对称多面体相关的光滑Fano环变异的量子上同调的半简单性","authors":"Benjamin P. Mirabelli, Maksim Maydanskiy","doi":"10.3934/era.2011.18.131","DOIUrl":null,"url":null,"abstract":"The degree zero part of the quantum cohomology algebra of a smooth Fano toric symplectic manifold is determined by the superpotential function, $W$, of its moment polytope. In particular, this algebra is semisimple, i.e. splits as a product of fields, if and only if all the critical points of $W$ are non-degenerate. \nIn this paper, we prove that this non-degeneracy holds for all smooth Fano toric varieties with facet-symmetric duals to moment polytopes.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"18 1","pages":"131-143"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semisimplicity of the quantum cohomology for smooth Fano toric varieties associated with facet symmetric polytopes\",\"authors\":\"Benjamin P. Mirabelli, Maksim Maydanskiy\",\"doi\":\"10.3934/era.2011.18.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degree zero part of the quantum cohomology algebra of a smooth Fano toric symplectic manifold is determined by the superpotential function, $W$, of its moment polytope. In particular, this algebra is semisimple, i.e. splits as a product of fields, if and only if all the critical points of $W$ are non-degenerate. \\nIn this paper, we prove that this non-degeneracy holds for all smooth Fano toric varieties with facet-symmetric duals to moment polytopes.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"18 1\",\"pages\":\"131-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2011.18.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2011.18.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

光滑范诺环辛流形的量子上同调代数的零次部分由其矩多面体的超势函数W决定。特别地,这个代数是半简单的,即分裂为域的乘积,当且仅当W$的所有临界点都是非简并的。在本文中,我们证明了这一非简并性对于所有具有面对称对偶到矩多面体的光滑范诺环变体都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semisimplicity of the quantum cohomology for smooth Fano toric varieties associated with facet symmetric polytopes
The degree zero part of the quantum cohomology algebra of a smooth Fano toric symplectic manifold is determined by the superpotential function, $W$, of its moment polytope. In particular, this algebra is semisimple, i.e. splits as a product of fields, if and only if all the critical points of $W$ are non-degenerate. In this paper, we prove that this non-degeneracy holds for all smooth Fano toric varieties with facet-symmetric duals to moment polytopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信