亚分数vasicek模型下的亚洲期权定价

IF 3.2 Q1 BUSINESS, FINANCE
Lichao Tao, Yuefu Lai, Yanting Ji, Xiangxing Tao
{"title":"亚分数vasicek模型下的亚洲期权定价","authors":"Lichao Tao, Yuefu Lai, Yanting Ji, Xiangxing Tao","doi":"10.3934/qfe.2023020","DOIUrl":null,"url":null,"abstract":"This paper investigates the pricing formula for geometric Asian options where the underlying asset is driven by the sub-fractional Brownian motion with interest rate satisfying the sub-fractional Vasicek model. By applying the sub-fractional $ {\\rm{It\\hat o}} $ formula, the Black-Scholes (B-S) type Partial Differential Equations (PDE) to Asian geometric average option is derived by Delta hedging principle. Moreover, the explicit pricing formula for Asian options is obtained through converting the PDE to the Cauchy problem. Numerical experiments are conducted to test the impact of the stock price, the Hurst index, the speed of interest rate adjustment, and the volatilities and their correlation for the Asian option and the interest rate model, respectively. The results show that the main parameters such as Hurst index have a significant influence on the price of Asian options.","PeriodicalId":45226,"journal":{"name":"Quantitative Finance and Economics","volume":"1 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asian option pricing under sub-fractional vasicek model\",\"authors\":\"Lichao Tao, Yuefu Lai, Yanting Ji, Xiangxing Tao\",\"doi\":\"10.3934/qfe.2023020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the pricing formula for geometric Asian options where the underlying asset is driven by the sub-fractional Brownian motion with interest rate satisfying the sub-fractional Vasicek model. By applying the sub-fractional $ {\\\\rm{It\\\\hat o}} $ formula, the Black-Scholes (B-S) type Partial Differential Equations (PDE) to Asian geometric average option is derived by Delta hedging principle. Moreover, the explicit pricing formula for Asian options is obtained through converting the PDE to the Cauchy problem. Numerical experiments are conducted to test the impact of the stock price, the Hurst index, the speed of interest rate adjustment, and the volatilities and their correlation for the Asian option and the interest rate model, respectively. The results show that the main parameters such as Hurst index have a significant influence on the price of Asian options.\",\"PeriodicalId\":45226,\"journal\":{\"name\":\"Quantitative Finance and Economics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/qfe.2023020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/qfe.2023020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了标的资产受次分数布朗运动驱动且利率满足次分数Vasicek模型的几何亚洲期权的定价公式。应用子分数式$ {\rm{It\hat o}} $公式,利用Delta套期保值原理推导出亚洲几何平均期权的Black-Scholes (B-S)型偏微分方程。将PDE问题转化为柯西问题,得到了亚洲期权的显式定价公式。通过数值实验分别检验了股票价格、Hurst指数、利率调整速度、波动性及其相关性对亚洲期权和利率模型的影响。结果表明,Hurst指数等主要参数对亚洲期权价格有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asian option pricing under sub-fractional vasicek model
This paper investigates the pricing formula for geometric Asian options where the underlying asset is driven by the sub-fractional Brownian motion with interest rate satisfying the sub-fractional Vasicek model. By applying the sub-fractional $ {\rm{It\hat o}} $ formula, the Black-Scholes (B-S) type Partial Differential Equations (PDE) to Asian geometric average option is derived by Delta hedging principle. Moreover, the explicit pricing formula for Asian options is obtained through converting the PDE to the Cauchy problem. Numerical experiments are conducted to test the impact of the stock price, the Hurst index, the speed of interest rate adjustment, and the volatilities and their correlation for the Asian option and the interest rate model, respectively. The results show that the main parameters such as Hurst index have a significant influence on the price of Asian options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
1.90%
发文量
14
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信