{"title":"放射性污染环境影响评价卫生物理计算框架","authors":"F. Teodori","doi":"10.3934/environsci.2021026","DOIUrl":null,"url":null,"abstract":"A fundamental step for safety assessment is the study and modeling of the radionuclide transfer through the environment up to reach and expose population to risk. In this vein we are working to provide a reliable and flexible computational framework which can be used for both retrospective and prospective calculations of radiation doses and human health effects, resulting from both routine and uncontrolled releases of radionuclides to the environment and from pre-existing environment contamination. The goal is to provide a multipurpose computational tool to be used for siting facilities, environmental impact statements, and safety analysis reports. The code can handle: external exposure from finite or infinite atmospheric plumes; external exposure from contaminated soil, sediments, and water; external exposure from special geometries; and internal exposures from inhalation, inadvertent intake of soil, consumption of terrestrial foods, aquatic foods, drinking water, and animal products.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Health physics calculation framework for environmental impact assessment of radiological contamination\",\"authors\":\"F. Teodori\",\"doi\":\"10.3934/environsci.2021026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental step for safety assessment is the study and modeling of the radionuclide transfer through the environment up to reach and expose population to risk. In this vein we are working to provide a reliable and flexible computational framework which can be used for both retrospective and prospective calculations of radiation doses and human health effects, resulting from both routine and uncontrolled releases of radionuclides to the environment and from pre-existing environment contamination. The goal is to provide a multipurpose computational tool to be used for siting facilities, environmental impact statements, and safety analysis reports. The code can handle: external exposure from finite or infinite atmospheric plumes; external exposure from contaminated soil, sediments, and water; external exposure from special geometries; and internal exposures from inhalation, inadvertent intake of soil, consumption of terrestrial foods, aquatic foods, drinking water, and animal products.\",\"PeriodicalId\":45143,\"journal\":{\"name\":\"AIMS Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/environsci.2021026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/environsci.2021026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Health physics calculation framework for environmental impact assessment of radiological contamination
A fundamental step for safety assessment is the study and modeling of the radionuclide transfer through the environment up to reach and expose population to risk. In this vein we are working to provide a reliable and flexible computational framework which can be used for both retrospective and prospective calculations of radiation doses and human health effects, resulting from both routine and uncontrolled releases of radionuclides to the environment and from pre-existing environment contamination. The goal is to provide a multipurpose computational tool to be used for siting facilities, environmental impact statements, and safety analysis reports. The code can handle: external exposure from finite or infinite atmospheric plumes; external exposure from contaminated soil, sediments, and water; external exposure from special geometries; and internal exposures from inhalation, inadvertent intake of soil, consumption of terrestrial foods, aquatic foods, drinking water, and animal products.