开关磁阻发电机控制的蚁群优化算法与模糊逻辑

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2022-01-01 DOI:10.3934/energy.2022045
Rabyi Tarik, B. Adil
{"title":"开关磁阻发电机控制的蚁群优化算法与模糊逻辑","authors":"Rabyi Tarik, B. Adil","doi":"10.3934/energy.2022045","DOIUrl":null,"url":null,"abstract":"This article discusses two methods to control the output voltage of switched reluctance generators (SRGs) used in wind generator systems. To reduce the ripple of the SRG output voltage, a closed-loop voltage control technique has been designed. In the first method, a proportional-integral (PI) controller is used. The parameters of the PI controller are tuned based on the voltage variation. The SRG is generally characterized by strong nonlinearities. However, finding appropriate values for the PI controller is not an easy task. To overcome this problem and simplify the process of tuning the PI controller parameters, a solution based on the ant colony optimization algorithm (ACO) was developed. To settle the PI parameters, several cost functions are used in the implementation of the ACO algorithm. To control the SRG output voltage, a second method was developed based on the fuzzy logic controller. Unlike several previous works, the proposed methods, ACO and fuzzy logic control, are easy to implement and can solve numerous optimization problems. To check the best approach, a comparison between the two methods was performed. Finally, to show the effectiveness of this study, we present examples of simulations that entail the use of a three-phase SRG with a 12/8 structure and SIMULINK tools.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ant colony optimization algorithm and fuzzy logic for switched reluctance generator control\",\"authors\":\"Rabyi Tarik, B. Adil\",\"doi\":\"10.3934/energy.2022045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses two methods to control the output voltage of switched reluctance generators (SRGs) used in wind generator systems. To reduce the ripple of the SRG output voltage, a closed-loop voltage control technique has been designed. In the first method, a proportional-integral (PI) controller is used. The parameters of the PI controller are tuned based on the voltage variation. The SRG is generally characterized by strong nonlinearities. However, finding appropriate values for the PI controller is not an easy task. To overcome this problem and simplify the process of tuning the PI controller parameters, a solution based on the ant colony optimization algorithm (ACO) was developed. To settle the PI parameters, several cost functions are used in the implementation of the ACO algorithm. To control the SRG output voltage, a second method was developed based on the fuzzy logic controller. Unlike several previous works, the proposed methods, ACO and fuzzy logic control, are easy to implement and can solve numerous optimization problems. To check the best approach, a comparison between the two methods was performed. Finally, to show the effectiveness of this study, we present examples of simulations that entail the use of a three-phase SRG with a 12/8 structure and SIMULINK tools.\",\"PeriodicalId\":45696,\"journal\":{\"name\":\"AIMS Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/energy.2022045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了两种控制风力发电系统中开关磁阻发电机输出电压的方法。为了减小SRG输出电压的纹波,设计了一种闭环电压控制技术。在第一种方法中,使用比例积分(PI)控制器。PI控制器的参数是根据电压的变化来调整的。SRG一般具有强非线性特征。然而,为PI控制器找到合适的值并不是一件容易的事。为了克服这一问题,简化PI控制器参数的整定过程,提出了一种基于蚁群优化算法的解决方案。为了确定PI参数,在蚁群算法的实现中使用了几个代价函数。针对SRG输出电压的控制,提出了基于模糊控制器的第二种控制方法。与之前的一些工作不同,本文提出的蚁群算法和模糊逻辑控制方法易于实现,可以解决许多优化问题。为了验证最佳方法,对两种方法进行了比较。最后,为了显示本研究的有效性,我们提供了需要使用具有12/8结构和SIMULINK工具的三相SRG的仿真示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ant colony optimization algorithm and fuzzy logic for switched reluctance generator control
This article discusses two methods to control the output voltage of switched reluctance generators (SRGs) used in wind generator systems. To reduce the ripple of the SRG output voltage, a closed-loop voltage control technique has been designed. In the first method, a proportional-integral (PI) controller is used. The parameters of the PI controller are tuned based on the voltage variation. The SRG is generally characterized by strong nonlinearities. However, finding appropriate values for the PI controller is not an easy task. To overcome this problem and simplify the process of tuning the PI controller parameters, a solution based on the ant colony optimization algorithm (ACO) was developed. To settle the PI parameters, several cost functions are used in the implementation of the ACO algorithm. To control the SRG output voltage, a second method was developed based on the fuzzy logic controller. Unlike several previous works, the proposed methods, ACO and fuzzy logic control, are easy to implement and can solve numerous optimization problems. To check the best approach, a comparison between the two methods was performed. Finally, to show the effectiveness of this study, we present examples of simulations that entail the use of a three-phase SRG with a 12/8 structure and SIMULINK tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信