Sharayu Moharir, Ananya S. Omanwar, Neeraja Sahasrabudhe
{"title":"在行为各异和受外部影响的不断增长的人口中,二元观点的扩散","authors":"Sharayu Moharir, Ananya S. Omanwar, Neeraja Sahasrabudhe","doi":"10.3934/nhm.2023056","DOIUrl":null,"url":null,"abstract":"We consider a growing population of individuals with binary opinions, namely, 0 or 1, that evolve in discrete time. The underlying interaction network is complete. At every time step, a fixed number of individuals are added to the population. The opinion of the new individuals may or may not depend on the current configuration of opinions in the population. Further, in each time step, a fixed number of individuals are chosen and they update their opinion in three possible ways: they organically switch their opinion with some probability and with some probability they adopt the majority or the minority opinion. We study the asymptotic behaviour of the fraction of individuals with either opinion and characterize conditions under which it converges to a deterministic limit. We analyze the behaviour of the limiting fraction as a function of the probability of new individuals having opinion 1 as well as with respect to the ratio of the number of people being added to the population and the number of people being chosen to update opinions. We also discuss the nature of fluctuations around the limiting fraction and study the transitions in scaling depending on the system parameters. Further, for this opinion dynamics model on a finite time horizon, we obtain optimal external influencing strategies in terms of when to influence to get the maximum expected fraction of individuals with opinion 1 at the end of the finite time horizon.","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion of binary opinions in a growing population with heterogeneous behaviour and external influence\",\"authors\":\"Sharayu Moharir, Ananya S. Omanwar, Neeraja Sahasrabudhe\",\"doi\":\"10.3934/nhm.2023056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a growing population of individuals with binary opinions, namely, 0 or 1, that evolve in discrete time. The underlying interaction network is complete. At every time step, a fixed number of individuals are added to the population. The opinion of the new individuals may or may not depend on the current configuration of opinions in the population. Further, in each time step, a fixed number of individuals are chosen and they update their opinion in three possible ways: they organically switch their opinion with some probability and with some probability they adopt the majority or the minority opinion. We study the asymptotic behaviour of the fraction of individuals with either opinion and characterize conditions under which it converges to a deterministic limit. We analyze the behaviour of the limiting fraction as a function of the probability of new individuals having opinion 1 as well as with respect to the ratio of the number of people being added to the population and the number of people being chosen to update opinions. We also discuss the nature of fluctuations around the limiting fraction and study the transitions in scaling depending on the system parameters. Further, for this opinion dynamics model on a finite time horizon, we obtain optimal external influencing strategies in terms of when to influence to get the maximum expected fraction of individuals with opinion 1 at the end of the finite time horizon.\",\"PeriodicalId\":54732,\"journal\":{\"name\":\"Networks and Heterogeneous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks and Heterogeneous Media\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/nhm.2023056\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/nhm.2023056","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Diffusion of binary opinions in a growing population with heterogeneous behaviour and external influence
We consider a growing population of individuals with binary opinions, namely, 0 or 1, that evolve in discrete time. The underlying interaction network is complete. At every time step, a fixed number of individuals are added to the population. The opinion of the new individuals may or may not depend on the current configuration of opinions in the population. Further, in each time step, a fixed number of individuals are chosen and they update their opinion in three possible ways: they organically switch their opinion with some probability and with some probability they adopt the majority or the minority opinion. We study the asymptotic behaviour of the fraction of individuals with either opinion and characterize conditions under which it converges to a deterministic limit. We analyze the behaviour of the limiting fraction as a function of the probability of new individuals having opinion 1 as well as with respect to the ratio of the number of people being added to the population and the number of people being chosen to update opinions. We also discuss the nature of fluctuations around the limiting fraction and study the transitions in scaling depending on the system parameters. Further, for this opinion dynamics model on a finite time horizon, we obtain optimal external influencing strategies in terms of when to influence to get the maximum expected fraction of individuals with opinion 1 at the end of the finite time horizon.
期刊介绍:
NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation.
NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.