粉虱肌球蛋白基因家族的鉴定与分析

IF 0.7 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kui Wang, Zhifang Yang, Xiaohui Chen, Shunxiao Liu, Xiang Li, Liuhao Wang, Hao Yu, Hongwei Zhang
{"title":"粉虱肌球蛋白基因家族的鉴定与分析","authors":"Kui Wang, Zhifang Yang, Xiaohui Chen, Shunxiao Liu, Xiang Li, Liuhao Wang, Hao Yu, Hongwei Zhang","doi":"10.3934/molsci.2022006","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Myosin is an actin-based motor protein that widely exists in muscle tissue and non-muscle tissue, and myosin of a diverse subfamily has obvious differences in structure and cell function. Many eukaryotes and even some unicellular organisms possess a variety of myosins. They have been well characterized in human, fungi and other organisms. However, the myosin gene family in <italic>Bemisia tabaci</italic> MEAM1 (Middle East-Asia Minor1 species) is poorly studied. In the study, we identified 15 myosin genes in <italic>B. tabaci</italic> MEAM1 based on a genome database. Myosin genes can be divided into ten classes, including subfamilies I, II, III, V, VI, VII, IX, XV, XVIII, XX in <italic>B. tabaci</italic> MEAM1. The amounts of myosin in Class I are the largest of the isoforms. Expression profiling of myosins by quantitative real-time PCR revealed that their expression differed among developmental stages and different tissues of <italic>B. tabaci</italic> MEAM1. The diversely may be related to the development characteristics of <italic>B. tabaci</italic> MEAM1. The <italic>BtaMyo-IIIb-like X1</italic> was highly expressed in nymphs 4 instar which may be related to the development process before metamorphosis. Our outcome contributes to the basis for further research on myosin gene function in <italic>B. tabaci</italic> MEAM1 and homologous myosins in other biology.</p> </abstract>","PeriodicalId":44217,"journal":{"name":"AIMS Molecular Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization and analysis of myosin gene family in the whitefly (Bemisia tabaci)\",\"authors\":\"Kui Wang, Zhifang Yang, Xiaohui Chen, Shunxiao Liu, Xiang Li, Liuhao Wang, Hao Yu, Hongwei Zhang\",\"doi\":\"10.3934/molsci.2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>Myosin is an actin-based motor protein that widely exists in muscle tissue and non-muscle tissue, and myosin of a diverse subfamily has obvious differences in structure and cell function. Many eukaryotes and even some unicellular organisms possess a variety of myosins. They have been well characterized in human, fungi and other organisms. However, the myosin gene family in <italic>Bemisia tabaci</italic> MEAM1 (Middle East-Asia Minor1 species) is poorly studied. In the study, we identified 15 myosin genes in <italic>B. tabaci</italic> MEAM1 based on a genome database. Myosin genes can be divided into ten classes, including subfamilies I, II, III, V, VI, VII, IX, XV, XVIII, XX in <italic>B. tabaci</italic> MEAM1. The amounts of myosin in Class I are the largest of the isoforms. Expression profiling of myosins by quantitative real-time PCR revealed that their expression differed among developmental stages and different tissues of <italic>B. tabaci</italic> MEAM1. The diversely may be related to the development characteristics of <italic>B. tabaci</italic> MEAM1. The <italic>BtaMyo-IIIb-like X1</italic> was highly expressed in nymphs 4 instar which may be related to the development process before metamorphosis. Our outcome contributes to the basis for further research on myosin gene function in <italic>B. tabaci</italic> MEAM1 and homologous myosins in other biology.</p> </abstract>\",\"PeriodicalId\":44217,\"journal\":{\"name\":\"AIMS Molecular Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Molecular Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/molsci.2022006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Molecular Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/molsci.2022006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

肌凝蛋白是广泛存在于肌肉组织和非肌肉组织中的一种基于肌动蛋白的运动蛋白,不同亚家族的肌凝蛋白在结构和细胞功能上存在明显差异。许多真核生物甚至一些单细胞生物都具有多种肌球蛋白。它们在人类、真菌和其他生物中都有很好的特征。然而,对烟粉虱MEAM1 (Middle - East-Asia Minor1)的肌球蛋白基因家族研究甚少。在这项研究中,我们基于基因组数据库,鉴定了烟粉虱MEAM1的15个肌球蛋白基因。烟粉虱MEAM1中肌球蛋白基因可分为10类,包括I、II、III、V、VI、VII、IX、XV、XVIII、XX亚家族。I类肌凝蛋白的数量是最大的同工型。利用实时荧光定量PCR技术分析了烟粉虱MEAM1在不同发育阶段和不同组织中肌球蛋白的表达。这在很大程度上可能与烟粉虱MEAM1的发育特征有关。btamyo - iiib样X1在若虫4龄时高表达,可能与变形前的发育过程有关。本研究结果为进一步研究烟粉虱MEAM1中肌球蛋白基因的功能以及其他生物学中同源肌球蛋白的功能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and analysis of myosin gene family in the whitefly (Bemisia tabaci)

Myosin is an actin-based motor protein that widely exists in muscle tissue and non-muscle tissue, and myosin of a diverse subfamily has obvious differences in structure and cell function. Many eukaryotes and even some unicellular organisms possess a variety of myosins. They have been well characterized in human, fungi and other organisms. However, the myosin gene family in Bemisia tabaci MEAM1 (Middle East-Asia Minor1 species) is poorly studied. In the study, we identified 15 myosin genes in B. tabaci MEAM1 based on a genome database. Myosin genes can be divided into ten classes, including subfamilies I, II, III, V, VI, VII, IX, XV, XVIII, XX in B. tabaci MEAM1. The amounts of myosin in Class I are the largest of the isoforms. Expression profiling of myosins by quantitative real-time PCR revealed that their expression differed among developmental stages and different tissues of B. tabaci MEAM1. The diversely may be related to the development characteristics of B. tabaci MEAM1. The BtaMyo-IIIb-like X1 was highly expressed in nymphs 4 instar which may be related to the development process before metamorphosis. Our outcome contributes to the basis for further research on myosin gene function in B. tabaci MEAM1 and homologous myosins in other biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Molecular Science
AIMS Molecular Science BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
0.00%
发文量
4
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信