{"title":"细轴突营养不良(gad)小鼠中去泛素化酶(UCH-L1)缺失导致的神经网络循环破坏","authors":"T. Kikuchi","doi":"10.3934/molsci.2021024","DOIUrl":null,"url":null,"abstract":"Gracile axonal dystrophy (gad) mouse shows tremor, ataxia and muscular atrophy of hind limbs from about 80-days of age. These clinical features become progressively severe to death. Pathological examination reveals that main and early axonal degeneration exists in a long ascending nervous tract in dorsal column of the spinal cord: gracile nucleus and fascicules. Similar lesions are seen in axonal terminals of peripheral sensory (muscle spindles) and motor endplates. Most striking features of axonal dystrophy are “dying-back” axonal degeneration with partial swellings (“spheroids” in matured type) which come to be most frequently in gracile nucleus, followed by in order of gracile fasciculus of cervical, thoracic and lumber cord levels. Immunocytochemical increase of glial fibrillary acidic protein (GFAP) and substance P (SP) is seen in reactive astrocytes and degenerating axons. Likewise, amyloid precursor protein (APP) and amyloid β-protein (AβP) activity become positive in axons and astrocytes along ascending tract. Moreover, ubiquitin-positive dot-like structures accumulate in gracile nucleus, spinocerebellar tract, and cerebellum in gad mice after 9th-week old. Ubiquitinated structures are localized in spheroids with a larger diameter than normal. The gad mutation is caused by an in-frame deletion including exon 7 and 8 of UCH-L1 gene, encoding the ubiquitin c-terminal hydrolase (UCH) isozyme (UCH-L1) selectively expressed in nervous system and testis/ovary. The gad allele encodes a truncated UCH-L1 lacking a segment of 42 amino acids containing catalytic site. The evaluation as mouse models for Parkinson's and Alzheimer's diseases and the collapse of synapse-axon circulation around central nervous system from peripheral nervous system are discussed.","PeriodicalId":44217,"journal":{"name":"AIMS Molecular Science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular breakdown of neural networks due to loss of deubiquitinating enzyme (UCH-L1) in gracile axonal dystrophy (gad) mouse\",\"authors\":\"T. Kikuchi\",\"doi\":\"10.3934/molsci.2021024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gracile axonal dystrophy (gad) mouse shows tremor, ataxia and muscular atrophy of hind limbs from about 80-days of age. These clinical features become progressively severe to death. Pathological examination reveals that main and early axonal degeneration exists in a long ascending nervous tract in dorsal column of the spinal cord: gracile nucleus and fascicules. Similar lesions are seen in axonal terminals of peripheral sensory (muscle spindles) and motor endplates. Most striking features of axonal dystrophy are “dying-back” axonal degeneration with partial swellings (“spheroids” in matured type) which come to be most frequently in gracile nucleus, followed by in order of gracile fasciculus of cervical, thoracic and lumber cord levels. Immunocytochemical increase of glial fibrillary acidic protein (GFAP) and substance P (SP) is seen in reactive astrocytes and degenerating axons. Likewise, amyloid precursor protein (APP) and amyloid β-protein (AβP) activity become positive in axons and astrocytes along ascending tract. Moreover, ubiquitin-positive dot-like structures accumulate in gracile nucleus, spinocerebellar tract, and cerebellum in gad mice after 9th-week old. Ubiquitinated structures are localized in spheroids with a larger diameter than normal. The gad mutation is caused by an in-frame deletion including exon 7 and 8 of UCH-L1 gene, encoding the ubiquitin c-terminal hydrolase (UCH) isozyme (UCH-L1) selectively expressed in nervous system and testis/ovary. The gad allele encodes a truncated UCH-L1 lacking a segment of 42 amino acids containing catalytic site. The evaluation as mouse models for Parkinson's and Alzheimer's diseases and the collapse of synapse-axon circulation around central nervous system from peripheral nervous system are discussed.\",\"PeriodicalId\":44217,\"journal\":{\"name\":\"AIMS Molecular Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Molecular Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/molsci.2021024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Molecular Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/molsci.2021024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Circular breakdown of neural networks due to loss of deubiquitinating enzyme (UCH-L1) in gracile axonal dystrophy (gad) mouse
Gracile axonal dystrophy (gad) mouse shows tremor, ataxia and muscular atrophy of hind limbs from about 80-days of age. These clinical features become progressively severe to death. Pathological examination reveals that main and early axonal degeneration exists in a long ascending nervous tract in dorsal column of the spinal cord: gracile nucleus and fascicules. Similar lesions are seen in axonal terminals of peripheral sensory (muscle spindles) and motor endplates. Most striking features of axonal dystrophy are “dying-back” axonal degeneration with partial swellings (“spheroids” in matured type) which come to be most frequently in gracile nucleus, followed by in order of gracile fasciculus of cervical, thoracic and lumber cord levels. Immunocytochemical increase of glial fibrillary acidic protein (GFAP) and substance P (SP) is seen in reactive astrocytes and degenerating axons. Likewise, amyloid precursor protein (APP) and amyloid β-protein (AβP) activity become positive in axons and astrocytes along ascending tract. Moreover, ubiquitin-positive dot-like structures accumulate in gracile nucleus, spinocerebellar tract, and cerebellum in gad mice after 9th-week old. Ubiquitinated structures are localized in spheroids with a larger diameter than normal. The gad mutation is caused by an in-frame deletion including exon 7 and 8 of UCH-L1 gene, encoding the ubiquitin c-terminal hydrolase (UCH) isozyme (UCH-L1) selectively expressed in nervous system and testis/ovary. The gad allele encodes a truncated UCH-L1 lacking a segment of 42 amino acids containing catalytic site. The evaluation as mouse models for Parkinson's and Alzheimer's diseases and the collapse of synapse-axon circulation around central nervous system from peripheral nervous system are discussed.