{"title":"Keller-Segel模型下椭圆系统$ W_0^{1,1} $解的“非线性对偶”方法","authors":"L. Boccardo","doi":"10.3934/mine.2023085","DOIUrl":null,"url":null,"abstract":"In this paper, we prove existence of distributional solutions of a nonlinear elliptic system, related to the Keller-Segel model. Our starting point is the boundedness theorem (for solutions of elliptic equations) proved by Guido Stampacchia and Neil Trudinger.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A \\\"nonlinear duality\\\" approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model\",\"authors\":\"L. Boccardo\",\"doi\":\"10.3934/mine.2023085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove existence of distributional solutions of a nonlinear elliptic system, related to the Keller-Segel model. Our starting point is the boundedness theorem (for solutions of elliptic equations) proved by Guido Stampacchia and Neil Trudinger.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A "nonlinear duality" approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model
In this paper, we prove existence of distributional solutions of a nonlinear elliptic system, related to the Keller-Segel model. Our starting point is the boundedness theorem (for solutions of elliptic equations) proved by Guido Stampacchia and Neil Trudinger.