周动力学的混合算子方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Cluni, V. Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, P. Pucci
{"title":"周动力学的混合算子方法","authors":"F. Cluni, V. Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, P. Pucci","doi":"10.3934/mine.2023082","DOIUrl":null,"url":null,"abstract":"In the present paper we propose a model describing the nonlocal behavior of an elastic body using a peridynamical approach. Indeed, peridynamics is a suitable framework for problems where discontinuities appear naturally, such as fractures, dislocations, or, in general, multiscale materials. In particular, the regional fractional Laplacian is used as the nonlocal operator. Moreover, a combination of the fractional and classical Laplacian operators is used to obtain a better description of the phenomenological response in elasticity. We consider models with linear and nonlinear perturbations. In the linear case, we prove the existence and uniqueness of the solution, while in the nonlinear case the existence of at least two nontrivial solutions of opposite sign is proved. The linear and nonlinear problems are also solved by a numerical approach which estimates the regional fractional Laplacian by means of its singular integral representation. In both cases, a numerical estimation of the solutions is obtained, using in the nonlinear case an approach involving a random variation of an initial guess of the solution. Moreover, in the linear case a parametric analysis is made in order to study the effects of the parameters involved in the model, such as the order of the fractional Laplacian and the mixture law between local and nonlocal behavior.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixed operator approach to peridynamics\",\"authors\":\"F. Cluni, V. Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, P. Pucci\",\"doi\":\"10.3934/mine.2023082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we propose a model describing the nonlocal behavior of an elastic body using a peridynamical approach. Indeed, peridynamics is a suitable framework for problems where discontinuities appear naturally, such as fractures, dislocations, or, in general, multiscale materials. In particular, the regional fractional Laplacian is used as the nonlocal operator. Moreover, a combination of the fractional and classical Laplacian operators is used to obtain a better description of the phenomenological response in elasticity. We consider models with linear and nonlinear perturbations. In the linear case, we prove the existence and uniqueness of the solution, while in the nonlinear case the existence of at least two nontrivial solutions of opposite sign is proved. The linear and nonlinear problems are also solved by a numerical approach which estimates the regional fractional Laplacian by means of its singular integral representation. In both cases, a numerical estimation of the solutions is obtained, using in the nonlinear case an approach involving a random variation of an initial guess of the solution. Moreover, in the linear case a parametric analysis is made in order to study the effects of the parameters involved in the model, such as the order of the fractional Laplacian and the mixture law between local and nonlocal behavior.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023082\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个用周动力学方法描述弹性体非局部行为的模型。事实上,对于不连续自然出现的问题,如断裂、位错或一般的多尺度材料,周动力学是一个合适的框架。特别地,使用区域分数阶拉普拉斯算子作为非局部算子。此外,将分数算子与经典拉普拉斯算子结合使用,可以更好地描述弹性的现象学响应。我们考虑具有线性和非线性扰动的模型。在线性情况下,证明了解的存在唯一性,在非线性情况下,证明了至少两个对号非平凡解的存在性。利用区域分数阶拉普拉斯算子的奇异积分表示估计区域分数阶拉普拉斯算子的数值方法解决了线性和非线性问题。在这两种情况下,都得到了解的数值估计,在非线性情况下,使用一种涉及解的初始猜测的随机变化的方法。此外,在线性情况下进行了参数分析,以研究模型中涉及的参数的影响,如分数阶拉普拉斯阶和局部与非局部行为之间的混合律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mixed operator approach to peridynamics
In the present paper we propose a model describing the nonlocal behavior of an elastic body using a peridynamical approach. Indeed, peridynamics is a suitable framework for problems where discontinuities appear naturally, such as fractures, dislocations, or, in general, multiscale materials. In particular, the regional fractional Laplacian is used as the nonlocal operator. Moreover, a combination of the fractional and classical Laplacian operators is used to obtain a better description of the phenomenological response in elasticity. We consider models with linear and nonlinear perturbations. In the linear case, we prove the existence and uniqueness of the solution, while in the nonlinear case the existence of at least two nontrivial solutions of opposite sign is proved. The linear and nonlinear problems are also solved by a numerical approach which estimates the regional fractional Laplacian by means of its singular integral representation. In both cases, a numerical estimation of the solutions is obtained, using in the nonlinear case an approach involving a random variation of an initial guess of the solution. Moreover, in the linear case a parametric analysis is made in order to study the effects of the parameters involved in the model, such as the order of the fractional Laplacian and the mixture law between local and nonlocal behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信