{"title":"基于纳米粒子的有机聚合物视网膜假体:建模、溶液图和仿真","authors":"G. Chiaravalli, G. Lanzani, R. Sacco, S. Salsa","doi":"10.3934/mine.2023075","DOIUrl":null,"url":null,"abstract":"In this article we investigate a mathematical model for a retinal prosthesis made of organic polymer nanoparticles (NP) in the stationary regime. The model consists of a Drift-Diffusion system to describe free charge transport in the NP bulk; a Poisson-Nernst-Planck system to describe ion electrodiffusion in the solution surrounding the NP; and nonlinear transmission conditions at the NP-solution interface. To solve the model we use an iteration procedure for which we prove the existence and briefly comment the uniqueness of a fixed point under suitable smallness assumptions on model parameters. For system discretization we use a stabilized finite element method to prevent unphysical oscillations in the electric potential, carrier number densities and ion molar densities. Model predictions describe the amount of active chemical molecule accumulating at the neuron surface and highlight electrostatic effects induced by the sole presence of the nanoparticle. These results support the use of mathematical modeling as a virtual laboratory for the optimal design of bio-hybrid systems, whose investigation may be impervious due to experimental limits.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle-based organic polymer retinal prostheses: modeling, solution map and simulation\",\"authors\":\"G. Chiaravalli, G. Lanzani, R. Sacco, S. Salsa\",\"doi\":\"10.3934/mine.2023075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we investigate a mathematical model for a retinal prosthesis made of organic polymer nanoparticles (NP) in the stationary regime. The model consists of a Drift-Diffusion system to describe free charge transport in the NP bulk; a Poisson-Nernst-Planck system to describe ion electrodiffusion in the solution surrounding the NP; and nonlinear transmission conditions at the NP-solution interface. To solve the model we use an iteration procedure for which we prove the existence and briefly comment the uniqueness of a fixed point under suitable smallness assumptions on model parameters. For system discretization we use a stabilized finite element method to prevent unphysical oscillations in the electric potential, carrier number densities and ion molar densities. Model predictions describe the amount of active chemical molecule accumulating at the neuron surface and highlight electrostatic effects induced by the sole presence of the nanoparticle. These results support the use of mathematical modeling as a virtual laboratory for the optimal design of bio-hybrid systems, whose investigation may be impervious due to experimental limits.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023075\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanoparticle-based organic polymer retinal prostheses: modeling, solution map and simulation
In this article we investigate a mathematical model for a retinal prosthesis made of organic polymer nanoparticles (NP) in the stationary regime. The model consists of a Drift-Diffusion system to describe free charge transport in the NP bulk; a Poisson-Nernst-Planck system to describe ion electrodiffusion in the solution surrounding the NP; and nonlinear transmission conditions at the NP-solution interface. To solve the model we use an iteration procedure for which we prove the existence and briefly comment the uniqueness of a fixed point under suitable smallness assumptions on model parameters. For system discretization we use a stabilized finite element method to prevent unphysical oscillations in the electric potential, carrier number densities and ion molar densities. Model predictions describe the amount of active chemical molecule accumulating at the neuron surface and highlight electrostatic effects induced by the sole presence of the nanoparticle. These results support the use of mathematical modeling as a virtual laboratory for the optimal design of bio-hybrid systems, whose investigation may be impervious due to experimental limits.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.