多凸泛函和极大原理

IF 1.4 4区 工程技术 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Carozza, L. Esposito, Raffaella Giova, F. Leonetti
{"title":"多凸泛函和极大原理","authors":"M. Carozza, L. Esposito, Raffaella Giova, F. Leonetti","doi":"10.3934/mine.2023077","DOIUrl":null,"url":null,"abstract":"<abstract><p>Let us consider continuous minimizers $ u : \\bar \\Omega \\subset \\mathbb{R}^n \\to \\mathbb{R}^n $ of</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\mathcal{F}(v) = \\int_{\\Omega} [|Dv|^p \\, + \\, |{\\rm det}\\,Dv|^r] dx, $\\end{document} </tex-math></disp-formula></p> <p>with $ p > 1 $ and $ r > 0 $; then it is known that every component $ u^\\alpha $ of $ u = (u^1, ..., u^n) $ enjoys maximum principle: the set of interior points $ x $, for which the value $ u^\\alpha(x) $ is greater than the supremum on the boundary, has null measure, that is, $ \\mathcal{L}^n(\\{ x \\in \\Omega: u^\\alpha (x) > \\sup_{\\partial \\Omega} u^\\alpha \\}) = 0 $. If we change the structure of the functional, it might happen that the maximum principle fails, as in the case</p> <p><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\mathcal{F}(v) = \\int_{\\Omega}[\\max\\{(|Dv|^p - 1); 0 \\} \\, + \\, |{\\rm det}\\,Dv|^r] dx, $\\end{document} </tex-math></disp-formula></p> <p>with $ p > 1 $ and $ r > 0 $. Indeed, for a suitable boundary value, the set of the interior points $ x $, for which the value $ u^\\alpha(x) $ is greater than the supremum on the boundary, has a positive measure, that is $ \\mathcal{L}^n(\\{ x \\in \\Omega: u^\\alpha (x) > \\sup_{\\partial \\Omega} u^\\alpha \\}) > 0 $. In this paper we show that the measure of the image of these bad points is zero, that is $ \\mathcal{L}^n(u(\\{ x \\in \\Omega: u^\\alpha (x) > \\sup_{\\partial \\Omega} u^\\alpha \\})) = 0 $, provided $ p > n $. This is a particular case of a more general theorem.</p></abstract>","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polyconvex functionals and maximum principle\",\"authors\":\"M. Carozza, L. Esposito, Raffaella Giova, F. Leonetti\",\"doi\":\"10.3934/mine.2023077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Let us consider continuous minimizers $ u : \\\\bar \\\\Omega \\\\subset \\\\mathbb{R}^n \\\\to \\\\mathbb{R}^n $ of</p> <p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\mathcal{F}(v) = \\\\int_{\\\\Omega} [|Dv|^p \\\\, + \\\\, |{\\\\rm det}\\\\,Dv|^r] dx, $\\\\end{document} </tex-math></disp-formula></p> <p>with $ p > 1 $ and $ r > 0 $; then it is known that every component $ u^\\\\alpha $ of $ u = (u^1, ..., u^n) $ enjoys maximum principle: the set of interior points $ x $, for which the value $ u^\\\\alpha(x) $ is greater than the supremum on the boundary, has null measure, that is, $ \\\\mathcal{L}^n(\\\\{ x \\\\in \\\\Omega: u^\\\\alpha (x) > \\\\sup_{\\\\partial \\\\Omega} u^\\\\alpha \\\\}) = 0 $. If we change the structure of the functional, it might happen that the maximum principle fails, as in the case</p> <p><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\mathcal{F}(v) = \\\\int_{\\\\Omega}[\\\\max\\\\{(|Dv|^p - 1); 0 \\\\} \\\\, + \\\\, |{\\\\rm det}\\\\,Dv|^r] dx, $\\\\end{document} </tex-math></disp-formula></p> <p>with $ p > 1 $ and $ r > 0 $. Indeed, for a suitable boundary value, the set of the interior points $ x $, for which the value $ u^\\\\alpha(x) $ is greater than the supremum on the boundary, has a positive measure, that is $ \\\\mathcal{L}^n(\\\\{ x \\\\in \\\\Omega: u^\\\\alpha (x) > \\\\sup_{\\\\partial \\\\Omega} u^\\\\alpha \\\\}) > 0 $. In this paper we show that the measure of the image of these bad points is zero, that is $ \\\\mathcal{L}^n(u(\\\\{ x \\\\in \\\\Omega: u^\\\\alpha (x) > \\\\sup_{\\\\partial \\\\Omega} u^\\\\alpha \\\\})) = 0 $, provided $ p > n $. This is a particular case of a more general theorem.</p></abstract>\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023077\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

Let us consider continuous minimizers $ u : \bar \Omega \subset \mathbb{R}^n \to \mathbb{R}^n $ of \begin{document}$ \mathcal{F}(v) = \int_{\Omega} [|Dv|^p \, + \, |{\rm det}\,Dv|^r] dx, $\end{document} with $ p > 1 $ and $ r > 0 $; then it is known that every component $ u^\alpha $ of $ u = (u^1, ..., u^n) $ enjoys maximum principle: the set of interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has null measure, that is, $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) = 0 $. If we change the structure of the functional, it might happen that the maximum principle fails, as in the case \begin{document}$ \mathcal{F}(v) = \int_{\Omega}[\max\{(|Dv|^p - 1); 0 \} \, + \, |{\rm det}\,Dv|^r] dx, $\end{document} with $ p > 1 $ and $ r > 0 $. Indeed, for a suitable boundary value, the set of the interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has a positive measure, that is $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) > 0 $. In this paper we show that the measure of the image of these bad points is zero, that is $ \mathcal{L}^n(u(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \})) = 0 $, provided $ p > n $. This is a particular case of a more general theorem.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyconvex functionals and maximum principle

Let us consider continuous minimizers $ u : \bar \Omega \subset \mathbb{R}^n \to \mathbb{R}^n $ of

with $ p > 1 $ and $ r > 0 $; then it is known that every component $ u^\alpha $ of $ u = (u^1, ..., u^n) $ enjoys maximum principle: the set of interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has null measure, that is, $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) = 0 $. If we change the structure of the functional, it might happen that the maximum principle fails, as in the case

with $ p > 1 $ and $ r > 0 $. Indeed, for a suitable boundary value, the set of the interior points $ x $, for which the value $ u^\alpha(x) $ is greater than the supremum on the boundary, has a positive measure, that is $ \mathcal{L}^n(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \}) > 0 $. In this paper we show that the measure of the image of these bad points is zero, that is $ \mathcal{L}^n(u(\{ x \in \Omega: u^\alpha (x) > \sup_{\partial \Omega} u^\alpha \})) = 0 $, provided $ p > n $. This is a particular case of a more general theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics in Engineering
Mathematics in Engineering MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.20
自引率
0.00%
发文量
64
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信