{"title":"具有时序抖动的斐波那契信号","authors":"D. Citrin","doi":"10.3934/mine.2023076","DOIUrl":null,"url":null,"abstract":"The power spectral density of a signal comprised of a sequence of Dirac $ \\delta $-functions at successive times determined by a Fibonacci sequence is the temporal analog of the well known structure factor for a Fibonacci chain. Such a signal is quasi-periodic and, under suitable choice of parameters, is the temporal analog of a one-dimensional quasicrystal. While the effects of disorder in the spatial case of Fibonacci chains has been studied numerically, having an analytically tractable stochastic model is needed both for the spatial and temporal cases to be able to study these effects as model parameters are varied. Here, we consider the effects of errors in where the $ \\delta $-functions defining the signal in the temporal case occur, i.e., timing jitter. In this work, we present an analytically tractable theory of how timing jitter affects the power spectral density of Fibonacci signals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibonacci signals with timing jitter\",\"authors\":\"D. Citrin\",\"doi\":\"10.3934/mine.2023076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power spectral density of a signal comprised of a sequence of Dirac $ \\\\delta $-functions at successive times determined by a Fibonacci sequence is the temporal analog of the well known structure factor for a Fibonacci chain. Such a signal is quasi-periodic and, under suitable choice of parameters, is the temporal analog of a one-dimensional quasicrystal. While the effects of disorder in the spatial case of Fibonacci chains has been studied numerically, having an analytically tractable stochastic model is needed both for the spatial and temporal cases to be able to study these effects as model parameters are varied. Here, we consider the effects of errors in where the $ \\\\delta $-functions defining the signal in the temporal case occur, i.e., timing jitter. In this work, we present an analytically tractable theory of how timing jitter affects the power spectral density of Fibonacci signals.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023076\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The power spectral density of a signal comprised of a sequence of Dirac $ \delta $-functions at successive times determined by a Fibonacci sequence is the temporal analog of the well known structure factor for a Fibonacci chain. Such a signal is quasi-periodic and, under suitable choice of parameters, is the temporal analog of a one-dimensional quasicrystal. While the effects of disorder in the spatial case of Fibonacci chains has been studied numerically, having an analytically tractable stochastic model is needed both for the spatial and temporal cases to be able to study these effects as model parameters are varied. Here, we consider the effects of errors in where the $ \delta $-functions defining the signal in the temporal case occur, i.e., timing jitter. In this work, we present an analytically tractable theory of how timing jitter affects the power spectral density of Fibonacci signals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.