{"title":"L^p $ Christoffel-Minkowski问题解的加权梯度估计","authors":"Pengfei Guan","doi":"10.3934/mine.2023067","DOIUrl":null,"url":null,"abstract":"We extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem\",\"authors\":\"Pengfei Guan\",\"doi\":\"10.3934/mine.2023067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023067\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
摘要
我们将给定的$ k $- $ L^p $-面积测度问题的非线性偏微分方程解的加权梯度估计推广到$ 0 < p < 1 $的情况。该估计得到了具有给定L^p $-面积测度的对称凸体的非坍缩估计。
A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem
We extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.