{"title":"生成雅可比方程的弱解","authors":"F. Jiang","doi":"10.3934/mine.2023064","DOIUrl":null,"url":null,"abstract":"We prove two groups of relationships for weak solutions to generated Jacobian equations under proper assumptions on the generating functions and the domains, which are generalizations for the optimal transportation case and the standard Monge-Ampère case respectively. One group of weak solutions is Aleksandrov solution, Brenier solution and $ C $-viscosity solution. The other group of weak solutions is Trudinger solution and $ L^p $-viscosity solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weak solutions of generated Jacobian equations\",\"authors\":\"F. Jiang\",\"doi\":\"10.3934/mine.2023064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove two groups of relationships for weak solutions to generated Jacobian equations under proper assumptions on the generating functions and the domains, which are generalizations for the optimal transportation case and the standard Monge-Ampère case respectively. One group of weak solutions is Aleksandrov solution, Brenier solution and $ C $-viscosity solution. The other group of weak solutions is Trudinger solution and $ L^p $-viscosity solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023064\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We prove two groups of relationships for weak solutions to generated Jacobian equations under proper assumptions on the generating functions and the domains, which are generalizations for the optimal transportation case and the standard Monge-Ampère case respectively. One group of weak solutions is Aleksandrov solution, Brenier solution and $ C $-viscosity solution. The other group of weak solutions is Trudinger solution and $ L^p $-viscosity solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.