{"title":"具有密度的洛伦兹积空间中平均曲率流的类空间平移孤子","authors":"M. Batista, Giovanni Molica Bisci, H. D. de Lima","doi":"10.3934/mine.2023054","DOIUrl":null,"url":null,"abstract":"By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau's maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space $ \\mathbb R_1\\times\\mathbb P^n_f $ endowed with a weight function $ f $ and whose Riemannian base $ \\mathbb P^n $ is supposed to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either $ \\mathbb R_1\\times\\mathbb G^n $, where $ \\mathbb G^n $ stands for the so-called $ n $-dimensional Gaussian space (which is the Euclidean space $ \\mathbb R^n $ endowed with the Gaussian probability measure) or $ \\mathbb R_1\\times\\mathbb H_f^n $, where $ \\mathbb H^n $ denotes the standard $ n $-dimensional hyperbolic space and $ f $ is the square of the distance function to a fixed point of $ \\mathbb H^n $, we derive some interesting consequences of our uniqueness and nonexistence results. In particular, we obtain nonexistence results concerning entire spacelike translating graphs constructed over $ \\mathbb P^n $.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density\",\"authors\":\"M. Batista, Giovanni Molica Bisci, H. D. de Lima\",\"doi\":\"10.3934/mine.2023054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau's maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space $ \\\\mathbb R_1\\\\times\\\\mathbb P^n_f $ endowed with a weight function $ f $ and whose Riemannian base $ \\\\mathbb P^n $ is supposed to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either $ \\\\mathbb R_1\\\\times\\\\mathbb G^n $, where $ \\\\mathbb G^n $ stands for the so-called $ n $-dimensional Gaussian space (which is the Euclidean space $ \\\\mathbb R^n $ endowed with the Gaussian probability measure) or $ \\\\mathbb R_1\\\\times\\\\mathbb H_f^n $, where $ \\\\mathbb H^n $ denotes the standard $ n $-dimensional hyperbolic space and $ f $ is the square of the distance function to a fixed point of $ \\\\mathbb H^n $, we derive some interesting consequences of our uniqueness and nonexistence results. In particular, we obtain nonexistence results concerning entire spacelike translating graphs constructed over $ \\\\mathbb P^n $.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023054\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
利用适当的liouvile型结果、适当的抛物性判据和漂移拉普拉斯算子的Omori-Yau极大值原理的一个版本,我们推导了具有权函数f的洛伦兹积空间$ \mathbb R_1\乘以$ mathbb P^n_f $中平均曲率流的完全类空平移孤子的唯一性和不存在性,该空间的黎曼底$ \mathbb P^n $被假定为完备且具有非负Bakry-Émery-Ricci张量。当周围的空间是美元\ mathbb R_1 \ * \ mathbb G ^ n,美元在\ mathbb G ^ n代表美元所谓的n维高斯空间美元(这是欧几里得空间$ \ mathbb R ^ n具有高斯概率测度)美元或美元\ mathbb R_1 \ * \ mathbb H_f ^ n美元\ mathbb H ^ n表示美元的标准n维双曲空间和$ f $美元是距离的平方函数的不动点\ mathbb H ^ n,美元我们得到了唯一性和非存在性结果的一些有趣的结果。特别地,我们得到了在$ \mathbb P^n $上构造的整个类空间平移图的不存在性结果。
Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density
By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau's maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space $ \mathbb R_1\times\mathbb P^n_f $ endowed with a weight function $ f $ and whose Riemannian base $ \mathbb P^n $ is supposed to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either $ \mathbb R_1\times\mathbb G^n $, where $ \mathbb G^n $ stands for the so-called $ n $-dimensional Gaussian space (which is the Euclidean space $ \mathbb R^n $ endowed with the Gaussian probability measure) or $ \mathbb R_1\times\mathbb H_f^n $, where $ \mathbb H^n $ denotes the standard $ n $-dimensional hyperbolic space and $ f $ is the square of the distance function to a fixed point of $ \mathbb H^n $, we derive some interesting consequences of our uniqueness and nonexistence results. In particular, we obtain nonexistence results concerning entire spacelike translating graphs constructed over $ \mathbb P^n $.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.