{"title":"玻尔兹曼方程的同能解:简单剪切变形的情况","authors":"A. Nota, J. Velázquez","doi":"10.3934/mine.2023019","DOIUrl":null,"url":null,"abstract":"<abstract><p>In these notes we review some recent results on the homoenergetic solutions for the Boltzmann equation obtained in <sup>[<xref ref-type=\"bibr\" rid=\"b4\">4</xref>,<xref ref-type=\"bibr\" rid=\"b20\">20</xref>,<xref ref-type=\"bibr\" rid=\"b21\">21</xref>,<xref ref-type=\"bibr\" rid=\"b22\">22</xref>]</sup>. These solutions are a particular class of non-equilibrium solutions of the Boltzmann equation which are useful to describe the dynamics of Boltzmann gases under shear, expansion or compression. Therefore, they do not behave asymptotically for long times as Maxwellian distributions, at least for all the choices of the collision kernels, and their behavior strongly depends on the homogeneity of the collision kernel and on the particular form of the hyperbolic terms which describe the deformation taking plance in the gas. We consider here the case of simple shear deformation and present different possible long-time asymptotics of these solutions. We discuss the current knowledge about the long-time behaviour of the homoenergetic solutions as well as some conjectures and open problems.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Homoenergetic solutions of the Boltzmann equation: the case of simple-shear deformations\",\"authors\":\"A. Nota, J. Velázquez\",\"doi\":\"10.3934/mine.2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>In these notes we review some recent results on the homoenergetic solutions for the Boltzmann equation obtained in <sup>[<xref ref-type=\\\"bibr\\\" rid=\\\"b4\\\">4</xref>,<xref ref-type=\\\"bibr\\\" rid=\\\"b20\\\">20</xref>,<xref ref-type=\\\"bibr\\\" rid=\\\"b21\\\">21</xref>,<xref ref-type=\\\"bibr\\\" rid=\\\"b22\\\">22</xref>]</sup>. These solutions are a particular class of non-equilibrium solutions of the Boltzmann equation which are useful to describe the dynamics of Boltzmann gases under shear, expansion or compression. Therefore, they do not behave asymptotically for long times as Maxwellian distributions, at least for all the choices of the collision kernels, and their behavior strongly depends on the homogeneity of the collision kernel and on the particular form of the hyperbolic terms which describe the deformation taking plance in the gas. We consider here the case of simple shear deformation and present different possible long-time asymptotics of these solutions. We discuss the current knowledge about the long-time behaviour of the homoenergetic solutions as well as some conjectures and open problems.</p></abstract>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Homoenergetic solutions of the Boltzmann equation: the case of simple-shear deformations
In these notes we review some recent results on the homoenergetic solutions for the Boltzmann equation obtained in [4,20,21,22]. These solutions are a particular class of non-equilibrium solutions of the Boltzmann equation which are useful to describe the dynamics of Boltzmann gases under shear, expansion or compression. Therefore, they do not behave asymptotically for long times as Maxwellian distributions, at least for all the choices of the collision kernels, and their behavior strongly depends on the homogeneity of the collision kernel and on the particular form of the hyperbolic terms which describe the deformation taking plance in the gas. We consider here the case of simple shear deformation and present different possible long-time asymptotics of these solutions. We discuss the current knowledge about the long-time behaviour of the homoenergetic solutions as well as some conjectures and open problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.