分数阶Malmheden定理

IF 1.4 4区 工程技术 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
S. Dipierro, G. Giacomin, E. Valdinoci
{"title":"分数阶Malmheden定理","authors":"S. Dipierro, G. Giacomin, E. Valdinoci","doi":"10.3934/mine.2023024","DOIUrl":null,"url":null,"abstract":"We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The fractional Malmheden theorem\",\"authors\":\"S. Dipierro, G. Giacomin, E. Valdinoci\",\"doi\":\"10.3934/mine.2023024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

我们提供了Schwarz和Malmheden关于调和函数的经典结果的分数对应物。由此得到$ s $-调和函数作为加权经典调和函数的线性叠加的表示公式,并对分数阶的哈纳克不等式作了新的证明。这个证明也得到了分数阶哈纳克不等式在球中的最优常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fractional Malmheden theorem
We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics in Engineering
Mathematics in Engineering MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.20
自引率
0.00%
发文量
64
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信