球中两相问题的一些比较结果和部分bang-bang性质

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Idriss Mazari
{"title":"球中两相问题的一些比较结果和部分bang-bang性质","authors":"Idriss Mazari","doi":"10.3934/mine.2023010","DOIUrl":null,"url":null,"abstract":"In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function $ a $ under $ L^\\infty $ and $ L^1 $ constraints, this function $ a $ appearing in a diffusive term of the form $ -{{\\nabla}} \\cdot(a{{\\nabla}}) $ in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the $ L^\\infty $ constraints defining the admissible class. This is done using an oscillatory method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some comparison results and a partial bang-bang property for two-phases problems in balls\",\"authors\":\"Idriss Mazari\",\"doi\":\"10.3934/mine.2023010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function $ a $ under $ L^\\\\infty $ and $ L^1 $ constraints, this function $ a $ appearing in a diffusive term of the form $ -{{\\\\nabla}} \\\\cdot(a{{\\\\nabla}}) $ in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the $ L^\\\\infty $ constraints defining the admissible class. This is done using an oscillatory method.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们对两相问题的研究提出了两种类型的贡献。在这类问题中,主要重点是在$ L^\infty $和$ L^1 $约束下优化扩散函数$ a $,该函数$ a $在模型中以形式为$ -{{\nabla}} \cdot(a{{\nabla}}) $的扩散项出现,以最大化某个准则。我们为一类椭圆优化问题提供了一个抛物线Talenti不等式和径向几何中的部分bang-bang性质:即,如果存在径向解,那么它必须在几乎每个点上饱和,$ L^\infty $约束定义了可接受的类。这是用振荡法完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some comparison results and a partial bang-bang property for two-phases problems in balls
In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function $ a $ under $ L^\infty $ and $ L^1 $ constraints, this function $ a $ appearing in a diffusive term of the form $ -{{\nabla}} \cdot(a{{\nabla}}) $ in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the $ L^\infty $ constraints defining the admissible class. This is done using an oscillatory method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信