关于Folland-Stein空间和分数阶水平Sobolev空间的集中-紧致原理

IF 1.4 4区 工程技术 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
P. Pucci, Letizia Temperini
{"title":"关于Folland-Stein空间和分数阶水平Sobolev空间的集中-紧致原理","authors":"P. Pucci, Letizia Temperini","doi":"10.3934/mine.2023007","DOIUrl":null,"url":null,"abstract":"In this paper we establish some variants of the celebrated concentration–compactness principle of Lions – CC principle briefly – in the classical and fractional Folland–Stein spaces. In the first part of the paper, following the main ideas of the pioneering papers of Lions, we prove the CC principle and its variant, that is the CC principle at infinity of Chabrowski, in the classical Folland–Stein space, involving the Hardy–Sobolev embedding in the Heisenberg setting. In the second part, we extend the method to the fractional Folland–Stein space. The results proved here will be exploited in a forthcoming paper to obtain existence of solutions for local and nonlocal subelliptic equations in the Heisenberg group, involving critical nonlinearities and Hardy terms. Indeed, in this type of problems a triple loss of compactness occurs and the issue of finding solutions is deeply connected to the concentration phenomena taking place when considering sequences of approximated solutions.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On the concentration–compactness principle for Folland–Stein spaces and for fractional horizontal Sobolev spaces\",\"authors\":\"P. Pucci, Letizia Temperini\",\"doi\":\"10.3934/mine.2023007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we establish some variants of the celebrated concentration–compactness principle of Lions – CC principle briefly – in the classical and fractional Folland–Stein spaces. In the first part of the paper, following the main ideas of the pioneering papers of Lions, we prove the CC principle and its variant, that is the CC principle at infinity of Chabrowski, in the classical Folland–Stein space, involving the Hardy–Sobolev embedding in the Heisenberg setting. In the second part, we extend the method to the fractional Folland–Stein space. The results proved here will be exploited in a forthcoming paper to obtain existence of solutions for local and nonlocal subelliptic equations in the Heisenberg group, involving critical nonlinearities and Hardy terms. Indeed, in this type of problems a triple loss of compactness occurs and the issue of finding solutions is deeply connected to the concentration phenomena taking place when considering sequences of approximated solutions.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 11

摘要

本文在经典和分数Folland-Stein空间中建立了著名的Lions集中-紧致原理- CC原理的几个变体。在本文的第一部分中,我们遵循Lions先驱论文的主要思想,在经典的Folland-Stein空间中证明CC原理及其变形,即Chabrowski的CC原理在无穷远处,涉及到Heisenberg设置中的Hardy-Sobolev嵌入。在第二部分中,我们将该方法推广到分数阶Folland-Stein空间。这里证明的结果将在即将发表的论文中被利用来获得Heisenberg群中涉及临界非线性和Hardy项的局部和非局部亚椭圆方程解的存在性。事实上,在这类问题中会出现紧性的三重损失,而寻找解的问题与考虑近似解序列时发生的集中现象密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the concentration–compactness principle for Folland–Stein spaces and for fractional horizontal Sobolev spaces
In this paper we establish some variants of the celebrated concentration–compactness principle of Lions – CC principle briefly – in the classical and fractional Folland–Stein spaces. In the first part of the paper, following the main ideas of the pioneering papers of Lions, we prove the CC principle and its variant, that is the CC principle at infinity of Chabrowski, in the classical Folland–Stein space, involving the Hardy–Sobolev embedding in the Heisenberg setting. In the second part, we extend the method to the fractional Folland–Stein space. The results proved here will be exploited in a forthcoming paper to obtain existence of solutions for local and nonlocal subelliptic equations in the Heisenberg group, involving critical nonlinearities and Hardy terms. Indeed, in this type of problems a triple loss of compactness occurs and the issue of finding solutions is deeply connected to the concentration phenomena taking place when considering sequences of approximated solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics in Engineering
Mathematics in Engineering MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.20
自引率
0.00%
发文量
64
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信