{"title":"阻尼弹性波动方程的谱框","authors":"B. Cassano, Lucrezia Cossetti, L. Fanelli","doi":"10.3934/mine.2022052","DOIUrl":null,"url":null,"abstract":"In this paper we investigate spectral properties of the damped elastic wave equation. Deducing a correspondence between the eigenvalue problem of this model and the one of Lamé operators with non self-adjoint perturbations, we provide quantitative bounds on the location of the point spectrum in terms of suitable norms of the damping coefficient.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spectral enclosures for the damped elastic wave equation\",\"authors\":\"B. Cassano, Lucrezia Cossetti, L. Fanelli\",\"doi\":\"10.3934/mine.2022052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate spectral properties of the damped elastic wave equation. Deducing a correspondence between the eigenvalue problem of this model and the one of Lamé operators with non self-adjoint perturbations, we provide quantitative bounds on the location of the point spectrum in terms of suitable norms of the damping coefficient.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2022052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2022052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Spectral enclosures for the damped elastic wave equation
In this paper we investigate spectral properties of the damped elastic wave equation. Deducing a correspondence between the eigenvalue problem of this model and the one of Lamé operators with non self-adjoint perturbations, we provide quantitative bounds on the location of the point spectrum in terms of suitable norms of the damping coefficient.