S. Park, Byeonguk Im, Dongyeol Lee, Sang-Joon Shin
{"title":"基于动态涡管的非重叠多旋翼无人机气动干扰分析","authors":"S. Park, Byeonguk Im, Dongyeol Lee, Sang-Joon Shin","doi":"10.4050/jahs.68.042010","DOIUrl":null,"url":null,"abstract":"With the wide application of unmanned aerial vehicles, interest in multirotor configurations has increased. The unique features of multirotor configuration have been intensely investigated, including aerodynamic interference, which is particularly important because it influences the vibration, noise, and handling quality of rotorcraft. Most previous studies have used high-fidelity approaches, such as computational fluid dynamics to identify such interference. However, such an approach is inappropriate for real-time flight simulations. In this study, an improved aerodynamic interference analysis based on a dynamic vortex tube was established for performance prediction in real-time flight simulation. A simple and effective formulation is proposed for integration with rotor aerodynamics to evaluate the interference of multirotor configurations. The present analysis is validated on various multirotor configurations. An investigation of interference in a multirotor unmanned aerial vehicle (UAV) is then presented. The analysis results exhibit good agreement with experimental results and high-fidelity predictions. Although the accuracy of the proposed analysis is lower than that of experimental studies and high-fidelity analyses, it is sufficient for capturing interference trends. The proposed analysis can account for aerodynamic interference in the flight simulation of a multirotor UAV.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic interference analysis for a nonoverlapping multirotor UAV based on dynamic vortex tube\",\"authors\":\"S. Park, Byeonguk Im, Dongyeol Lee, Sang-Joon Shin\",\"doi\":\"10.4050/jahs.68.042010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide application of unmanned aerial vehicles, interest in multirotor configurations has increased. The unique features of multirotor configuration have been intensely investigated, including aerodynamic interference, which is particularly important because it influences the vibration, noise, and handling quality of rotorcraft. Most previous studies have used high-fidelity approaches, such as computational fluid dynamics to identify such interference. However, such an approach is inappropriate for real-time flight simulations. In this study, an improved aerodynamic interference analysis based on a dynamic vortex tube was established for performance prediction in real-time flight simulation. A simple and effective formulation is proposed for integration with rotor aerodynamics to evaluate the interference of multirotor configurations. The present analysis is validated on various multirotor configurations. An investigation of interference in a multirotor unmanned aerial vehicle (UAV) is then presented. The analysis results exhibit good agreement with experimental results and high-fidelity predictions. Although the accuracy of the proposed analysis is lower than that of experimental studies and high-fidelity analyses, it is sufficient for capturing interference trends. The proposed analysis can account for aerodynamic interference in the flight simulation of a multirotor UAV.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.68.042010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.042010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Aerodynamic interference analysis for a nonoverlapping multirotor UAV based on dynamic vortex tube
With the wide application of unmanned aerial vehicles, interest in multirotor configurations has increased. The unique features of multirotor configuration have been intensely investigated, including aerodynamic interference, which is particularly important because it influences the vibration, noise, and handling quality of rotorcraft. Most previous studies have used high-fidelity approaches, such as computational fluid dynamics to identify such interference. However, such an approach is inappropriate for real-time flight simulations. In this study, an improved aerodynamic interference analysis based on a dynamic vortex tube was established for performance prediction in real-time flight simulation. A simple and effective formulation is proposed for integration with rotor aerodynamics to evaluate the interference of multirotor configurations. The present analysis is validated on various multirotor configurations. An investigation of interference in a multirotor unmanned aerial vehicle (UAV) is then presented. The analysis results exhibit good agreement with experimental results and high-fidelity predictions. Although the accuracy of the proposed analysis is lower than that of experimental studies and high-fidelity analyses, it is sufficient for capturing interference trends. The proposed analysis can account for aerodynamic interference in the flight simulation of a multirotor UAV.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine