{"title":"三种城市空中机动车辆尾流经验建模的大涡模拟","authors":"Denis-Gabriel Caprace, A. Ning","doi":"10.4050/jahs.68.042002","DOIUrl":null,"url":null,"abstract":"Recent advances in urban air mobility have driven the development of many new vertical take-off and landing (VTOL) concepts. These vehicles often feature original designs departing from the conventional helicopter configuration. Due to their novelty, the characteristics of the supervortices forming in the wake of such aircraft are unknown. However, these vortices may endanger any other vehicle evolving in their close proximity, owing to potentially large induced velocities. Therefore, improved knowledge about the wakes of VTOL vehicles is needed to guarantee safe urban air mobility operations. In this work, we study the wake of three VTOL aircraft in cruise by means of large eddy simulation. We present a two-stage numerical procedure that enables the simulation of long wake ages at a limited computational cost. Our simulations reveal that the wakes of rotary vehicles (quadcopter and side-by-side helicopter) feature larger wake vortex cores than an isolated wing. Their decay is also accelerated due to self-induced turbulence generated during the wake roll-up. A tilt-wing wake, on the other hand, is moderately turbulent and has smaller vortex cores than the wing. Finally, we introduce an empirical model of the vortex circulation distribution that enables fast prediction of wake-induced velocities, within a 2% error of the simulation results on average.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Eddy Simulation for Empirical Modeling of the Wake of Three Urban Air Mobility Vehicles\",\"authors\":\"Denis-Gabriel Caprace, A. Ning\",\"doi\":\"10.4050/jahs.68.042002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in urban air mobility have driven the development of many new vertical take-off and landing (VTOL) concepts. These vehicles often feature original designs departing from the conventional helicopter configuration. Due to their novelty, the characteristics of the supervortices forming in the wake of such aircraft are unknown. However, these vortices may endanger any other vehicle evolving in their close proximity, owing to potentially large induced velocities. Therefore, improved knowledge about the wakes of VTOL vehicles is needed to guarantee safe urban air mobility operations. In this work, we study the wake of three VTOL aircraft in cruise by means of large eddy simulation. We present a two-stage numerical procedure that enables the simulation of long wake ages at a limited computational cost. Our simulations reveal that the wakes of rotary vehicles (quadcopter and side-by-side helicopter) feature larger wake vortex cores than an isolated wing. Their decay is also accelerated due to self-induced turbulence generated during the wake roll-up. A tilt-wing wake, on the other hand, is moderately turbulent and has smaller vortex cores than the wing. Finally, we introduce an empirical model of the vortex circulation distribution that enables fast prediction of wake-induced velocities, within a 2% error of the simulation results on average.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.68.042002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.042002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Large Eddy Simulation for Empirical Modeling of the Wake of Three Urban Air Mobility Vehicles
Recent advances in urban air mobility have driven the development of many new vertical take-off and landing (VTOL) concepts. These vehicles often feature original designs departing from the conventional helicopter configuration. Due to their novelty, the characteristics of the supervortices forming in the wake of such aircraft are unknown. However, these vortices may endanger any other vehicle evolving in their close proximity, owing to potentially large induced velocities. Therefore, improved knowledge about the wakes of VTOL vehicles is needed to guarantee safe urban air mobility operations. In this work, we study the wake of three VTOL aircraft in cruise by means of large eddy simulation. We present a two-stage numerical procedure that enables the simulation of long wake ages at a limited computational cost. Our simulations reveal that the wakes of rotary vehicles (quadcopter and side-by-side helicopter) feature larger wake vortex cores than an isolated wing. Their decay is also accelerated due to self-induced turbulence generated during the wake roll-up. A tilt-wing wake, on the other hand, is moderately turbulent and has smaller vortex cores than the wing. Finally, we introduce an empirical model of the vortex circulation distribution that enables fast prediction of wake-induced velocities, within a 2% error of the simulation results on average.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine