{"title":"带相控旋翼的大型多旋翼机调性噪声特性比较","authors":"Brendan Smith, F. Gandhi, R. Niemiec","doi":"10.4050/jahs.68.032008","DOIUrl":null,"url":null,"abstract":"This study examines the acoustic behavior in hover of manned -size, multirotor, eVTOL aircraft in the classical quadcopter, hexacopter, and octocopter configurations. The rotors are assumed to have collective pitch control and operate at a specified RPM, with orthogonal and tip-to-tip rotor phasing considered. All configurations have the same disk loading and tip Mach number, with the rotor radius decreasing and RPM increasing, going from the quadcopter to the octocopter. The simulations use the Rensselaer Multicopter Analysis Code for the aerodynamic loads on the blades, coupled to an acoustic propagation code for noise predictions at selected observer locations. From the simulation results, orthogonal phasing between rotors is shown to produce significant noise reductions along interboom bisectors (between 9 and 14 dB relative to an equivalent single rotor, at 6 lb/ft2 disk loading and 0.51 tip Mach number). Further reducing the tip Mach number not only reduces the propagated noise but produces even deeper regions of quiet along the interboom bisectors (18–25 dB quieter at 3 lb/ft2 with 0.36 tip Mach number). An examination of the sound pressure level frequency spectra indicates that smaller faster spinning rotors (going from the quadcopter to octocopter) produce more tonal peaks at higher frequencies which would result in penalties in A-weighted noise.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparison of Tonal Noise Characteristics of Large Multicopters with Phased Rotors\",\"authors\":\"Brendan Smith, F. Gandhi, R. Niemiec\",\"doi\":\"10.4050/jahs.68.032008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the acoustic behavior in hover of manned -size, multirotor, eVTOL aircraft in the classical quadcopter, hexacopter, and octocopter configurations. The rotors are assumed to have collective pitch control and operate at a specified RPM, with orthogonal and tip-to-tip rotor phasing considered. All configurations have the same disk loading and tip Mach number, with the rotor radius decreasing and RPM increasing, going from the quadcopter to the octocopter. The simulations use the Rensselaer Multicopter Analysis Code for the aerodynamic loads on the blades, coupled to an acoustic propagation code for noise predictions at selected observer locations. From the simulation results, orthogonal phasing between rotors is shown to produce significant noise reductions along interboom bisectors (between 9 and 14 dB relative to an equivalent single rotor, at 6 lb/ft2 disk loading and 0.51 tip Mach number). Further reducing the tip Mach number not only reduces the propagated noise but produces even deeper regions of quiet along the interboom bisectors (18–25 dB quieter at 3 lb/ft2 with 0.36 tip Mach number). An examination of the sound pressure level frequency spectra indicates that smaller faster spinning rotors (going from the quadcopter to octocopter) produce more tonal peaks at higher frequencies which would result in penalties in A-weighted noise.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.68.032008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.032008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A Comparison of Tonal Noise Characteristics of Large Multicopters with Phased Rotors
This study examines the acoustic behavior in hover of manned -size, multirotor, eVTOL aircraft in the classical quadcopter, hexacopter, and octocopter configurations. The rotors are assumed to have collective pitch control and operate at a specified RPM, with orthogonal and tip-to-tip rotor phasing considered. All configurations have the same disk loading and tip Mach number, with the rotor radius decreasing and RPM increasing, going from the quadcopter to the octocopter. The simulations use the Rensselaer Multicopter Analysis Code for the aerodynamic loads on the blades, coupled to an acoustic propagation code for noise predictions at selected observer locations. From the simulation results, orthogonal phasing between rotors is shown to produce significant noise reductions along interboom bisectors (between 9 and 14 dB relative to an equivalent single rotor, at 6 lb/ft2 disk loading and 0.51 tip Mach number). Further reducing the tip Mach number not only reduces the propagated noise but produces even deeper regions of quiet along the interboom bisectors (18–25 dB quieter at 3 lb/ft2 with 0.36 tip Mach number). An examination of the sound pressure level frequency spectra indicates that smaller faster spinning rotors (going from the quadcopter to octocopter) produce more tonal peaks at higher frequencies which would result in penalties in A-weighted noise.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine