{"title":"自旋翼机的逆仿真","authors":"Matthew G. Gallup","doi":"10.4050/jahs.68.042001","DOIUrl":null,"url":null,"abstract":"The high fatality rate of autogyros in the 1990s sparked academic research into autogyro performance, stability and control, and handling qualities. This has included limited study on the inverse simulation of autogyros. The conducted research relied on the use of a modified version of the Generic Inverse Simulation Algorithm (GENISA), which used an iteratively recalculated inverse simulation time step to account for the variability in rotor speed throughout maneuvers. This does not allow for prediction of maneuver completion time, though, significantly increasing computational workload when developing ADS-33E mission task element maneuver models. The research conducted in this article presents a further modified inverse simulation algorithm, based on GENISA, which allows a constant inverse simulation time step to be utilized. Robustness analysis of the inverse simulation algorithm, using a mathematical model of the longitudinal dynamics of a two-seat Montgomerie–Parsons autogyro, showed it is robust enough to analyze realistic medium (60 mph) and high-speed (80 mph) longitudinal pop-up and pop-down maneuvers. More importantly, the constant time step in the algorithm allows for prediction of maneuver completion time, significantly reducing workload when conducting handling qualities assessment.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"44 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Simulation of Autogyros\",\"authors\":\"Matthew G. Gallup\",\"doi\":\"10.4050/jahs.68.042001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high fatality rate of autogyros in the 1990s sparked academic research into autogyro performance, stability and control, and handling qualities. This has included limited study on the inverse simulation of autogyros. The conducted research relied on the use of a modified version of the Generic Inverse Simulation Algorithm (GENISA), which used an iteratively recalculated inverse simulation time step to account for the variability in rotor speed throughout maneuvers. This does not allow for prediction of maneuver completion time, though, significantly increasing computational workload when developing ADS-33E mission task element maneuver models. The research conducted in this article presents a further modified inverse simulation algorithm, based on GENISA, which allows a constant inverse simulation time step to be utilized. Robustness analysis of the inverse simulation algorithm, using a mathematical model of the longitudinal dynamics of a two-seat Montgomerie–Parsons autogyro, showed it is robust enough to analyze realistic medium (60 mph) and high-speed (80 mph) longitudinal pop-up and pop-down maneuvers. More importantly, the constant time step in the algorithm allows for prediction of maneuver completion time, significantly reducing workload when conducting handling qualities assessment.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.68.042001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.042001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
The high fatality rate of autogyros in the 1990s sparked academic research into autogyro performance, stability and control, and handling qualities. This has included limited study on the inverse simulation of autogyros. The conducted research relied on the use of a modified version of the Generic Inverse Simulation Algorithm (GENISA), which used an iteratively recalculated inverse simulation time step to account for the variability in rotor speed throughout maneuvers. This does not allow for prediction of maneuver completion time, though, significantly increasing computational workload when developing ADS-33E mission task element maneuver models. The research conducted in this article presents a further modified inverse simulation algorithm, based on GENISA, which allows a constant inverse simulation time step to be utilized. Robustness analysis of the inverse simulation algorithm, using a mathematical model of the longitudinal dynamics of a two-seat Montgomerie–Parsons autogyro, showed it is robust enough to analyze realistic medium (60 mph) and high-speed (80 mph) longitudinal pop-up and pop-down maneuvers. More importantly, the constant time step in the algorithm allows for prediction of maneuver completion time, significantly reducing workload when conducting handling qualities assessment.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine