{"title":"含齿弯效应的混合直齿齿轮设计优化","authors":"Sean Gauntt, Sean Mcintyre, R. Campbell","doi":"10.4050/jahs.67.042009","DOIUrl":null,"url":null,"abstract":"A multiobjective design optimization technique for hybrid gears with sinusoidally shaped interlocks has been developed and applied to a hybrid spur gear. The hybrid gear concept consists of a metallic outer ring to support high tooth contact stress bonded to a composite inner web for weight reduction. Three design objectives were minimized for various geometric parameters controlling the composite–steel interface. Borg MOEA, a multiobjective evolutionary algorithm, was used to generate Pareto-optimal solutions for this design problem. Candidate designs were chosen from the Pareto-optimal set for more detailed analysis. From the results, we infer that the spur hybrid gear studied herein has the potential to decrease gear weight by approximately 27–45%, at the expense of a 22–34% increase in tooth pitch-point deflection, and that the optimal interface has between 15–20 cycles of the sinusoid with an amplitude of 0.25–0.35 mm.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Optimization of a Hybrid Spur Gear Including Tooth Bending Effects\",\"authors\":\"Sean Gauntt, Sean Mcintyre, R. Campbell\",\"doi\":\"10.4050/jahs.67.042009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiobjective design optimization technique for hybrid gears with sinusoidally shaped interlocks has been developed and applied to a hybrid spur gear. The hybrid gear concept consists of a metallic outer ring to support high tooth contact stress bonded to a composite inner web for weight reduction. Three design objectives were minimized for various geometric parameters controlling the composite–steel interface. Borg MOEA, a multiobjective evolutionary algorithm, was used to generate Pareto-optimal solutions for this design problem. Candidate designs were chosen from the Pareto-optimal set for more detailed analysis. From the results, we infer that the spur hybrid gear studied herein has the potential to decrease gear weight by approximately 27–45%, at the expense of a 22–34% increase in tooth pitch-point deflection, and that the optimal interface has between 15–20 cycles of the sinusoid with an amplitude of 0.25–0.35 mm.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.67.042009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.042009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Design Optimization of a Hybrid Spur Gear Including Tooth Bending Effects
A multiobjective design optimization technique for hybrid gears with sinusoidally shaped interlocks has been developed and applied to a hybrid spur gear. The hybrid gear concept consists of a metallic outer ring to support high tooth contact stress bonded to a composite inner web for weight reduction. Three design objectives were minimized for various geometric parameters controlling the composite–steel interface. Borg MOEA, a multiobjective evolutionary algorithm, was used to generate Pareto-optimal solutions for this design problem. Candidate designs were chosen from the Pareto-optimal set for more detailed analysis. From the results, we infer that the spur hybrid gear studied herein has the potential to decrease gear weight by approximately 27–45%, at the expense of a 22–34% increase in tooth pitch-point deflection, and that the optimal interface has between 15–20 cycles of the sinusoid with an amplitude of 0.25–0.35 mm.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine