旋翼轮毂阻力和尾流湍流的全尺寸雷诺数测试

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE
D. Reich, M. Krane, S. Willits, S. Schmitz
{"title":"旋翼轮毂阻力和尾流湍流的全尺寸雷诺数测试","authors":"D. Reich, M. Krane, S. Willits, S. Schmitz","doi":"10.4050/jahs.67.042008","DOIUrl":null,"url":null,"abstract":"A 1:4.25-scale model of a generic helicopter rotor hub was tested at Reynolds numbers ranging from 1.75 × 106 to 7 × 106 at advance ratio of 0.2 in The Pennsylvania State University Applied Research Laboratory Garfield Thomas 48-inch diameter water tunnel. Measurements including drag and wake characteristics were performed up to full-scale Reynolds number with respect to an industry-representative helicopter rotor hub. In particular, the variation of drag and flow field with Reynolds number was characterized. Load measurements were conducted using an improved load cell design, with greater accuracy than in previous experiments. Wake velocity was measured using laser Doppler velocimetry at two downstream planes, yielding velocity statistics to the second order. Improved load measurement accuracy and wake velocity spatial resolution, at full-scale Reynolds number, provide a unique dataset for computational fluid dynamics validation as part of the Penn State Rotor Hub Flow Prediction Workshops and physical insight into rotor hub flows.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Full-Scale Reynolds Number Testing of Rotor Hub Drag and Wake Turbulence\",\"authors\":\"D. Reich, M. Krane, S. Willits, S. Schmitz\",\"doi\":\"10.4050/jahs.67.042008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 1:4.25-scale model of a generic helicopter rotor hub was tested at Reynolds numbers ranging from 1.75 × 106 to 7 × 106 at advance ratio of 0.2 in The Pennsylvania State University Applied Research Laboratory Garfield Thomas 48-inch diameter water tunnel. Measurements including drag and wake characteristics were performed up to full-scale Reynolds number with respect to an industry-representative helicopter rotor hub. In particular, the variation of drag and flow field with Reynolds number was characterized. Load measurements were conducted using an improved load cell design, with greater accuracy than in previous experiments. Wake velocity was measured using laser Doppler velocimetry at two downstream planes, yielding velocity statistics to the second order. Improved load measurement accuracy and wake velocity spatial resolution, at full-scale Reynolds number, provide a unique dataset for computational fluid dynamics validation as part of the Penn State Rotor Hub Flow Prediction Workshops and physical insight into rotor hub flows.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.67.042008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.042008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

在宾夕法尼亚州立大学应用研究实验室加菲尔德托马斯48英寸直径水洞中,以1:4.25比例的通用直升机旋翼轮毂模型,在1.75 × 106 ~ 7 × 106雷诺数范围内,以0.2的提前比进行了试验。对具有行业代表性的直升机旋翼轮毂进行了拖曳和尾流特性测量,直至全尺寸雷诺数。重点研究了阻力和流场随雷诺数的变化规律。负载测量使用改进的称重传感器设计进行,比以前的实验具有更高的精度。用激光多普勒测速仪在两个下游平面上测量尾迹速度,得到二阶速度统计量。在全尺寸雷诺数下,改进的负载测量精度和尾流速度空间分辨率为计算流体动力学验证提供了独特的数据集,作为宾夕法尼亚州立大学转子轮毂流动预测研讨会和转子轮毂流动物理洞察的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-Scale Reynolds Number Testing of Rotor Hub Drag and Wake Turbulence
A 1:4.25-scale model of a generic helicopter rotor hub was tested at Reynolds numbers ranging from 1.75 × 106 to 7 × 106 at advance ratio of 0.2 in The Pennsylvania State University Applied Research Laboratory Garfield Thomas 48-inch diameter water tunnel. Measurements including drag and wake characteristics were performed up to full-scale Reynolds number with respect to an industry-representative helicopter rotor hub. In particular, the variation of drag and flow field with Reynolds number was characterized. Load measurements were conducted using an improved load cell design, with greater accuracy than in previous experiments. Wake velocity was measured using laser Doppler velocimetry at two downstream planes, yielding velocity statistics to the second order. Improved load measurement accuracy and wake velocity spatial resolution, at full-scale Reynolds number, provide a unique dataset for computational fluid dynamics validation as part of the Penn State Rotor Hub Flow Prediction Workshops and physical insight into rotor hub flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信