给水泵轴瓦失效分析

IF 0.4 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Han Zhang, Yihang Hou, Mengli Li, Ming Zhang
{"title":"给水泵轴瓦失效分析","authors":"Han Zhang, Yihang Hou, Mengli Li, Ming Zhang","doi":"10.3233/sfc-210262","DOIUrl":null,"url":null,"abstract":"BACKGROUND: A rolling bearing bush alloy of a feed water pump that is part of a waste heat boiler of an oil refinery has failed. OBJECTIVE: We try to analyze the reasons that caused the working surface of the bearing bush of the water pump to fall off and then give some suggestions to this failure. METHODS: The composition, microstructure, pit, and crack morphology of the bearing bush alloy were analyzed by the X-ray fluorescent analysis, the energy spectrum analysis, the optical microscope and the scanning electron microscope, respectively. RESULTS: The content of Pb in the bearing bush alloy was high, and the Cu content was low. The primary crystal Cu6Sn5 was low, and the crystal of SnSb with low density moved upward and segregated. The above phenomenon reduced the fatigue resistance of the babbitt alloy. The bearing bush was subjected to alternating loads in service, and several small cracks were generated on the bearing bush alloy working surface. The cracks continued to expand and connected with each other. Fatigue pitting occurred on the bearing bush working surface, a large number of pits were formed, and several large alloy blocks fell off. CONCLUSIONS: The Pb content in the failed bearing bush alloy was too high and did not meet the requirements of the Sn-based babbitt alloys in the national standard. At the same time, the primary crystal Cu6Sn5 formed by Cu and Sn was low due to the low Cu content, and the crystal SnSb with a small density moved upward and segregated. The composition of the babbitt alloy, especially the Cu content, should be strictly controlled to ensure the safe and reliable operation of the bearing.","PeriodicalId":41486,"journal":{"name":"Strength Fracture and Complexity","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/sfc-210262","citationCount":"0","resultStr":"{\"title\":\"Failure analysis of a bearing bush of a feed water pump\",\"authors\":\"Han Zhang, Yihang Hou, Mengli Li, Ming Zhang\",\"doi\":\"10.3233/sfc-210262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: A rolling bearing bush alloy of a feed water pump that is part of a waste heat boiler of an oil refinery has failed. OBJECTIVE: We try to analyze the reasons that caused the working surface of the bearing bush of the water pump to fall off and then give some suggestions to this failure. METHODS: The composition, microstructure, pit, and crack morphology of the bearing bush alloy were analyzed by the X-ray fluorescent analysis, the energy spectrum analysis, the optical microscope and the scanning electron microscope, respectively. RESULTS: The content of Pb in the bearing bush alloy was high, and the Cu content was low. The primary crystal Cu6Sn5 was low, and the crystal of SnSb with low density moved upward and segregated. The above phenomenon reduced the fatigue resistance of the babbitt alloy. The bearing bush was subjected to alternating loads in service, and several small cracks were generated on the bearing bush alloy working surface. The cracks continued to expand and connected with each other. Fatigue pitting occurred on the bearing bush working surface, a large number of pits were formed, and several large alloy blocks fell off. CONCLUSIONS: The Pb content in the failed bearing bush alloy was too high and did not meet the requirements of the Sn-based babbitt alloys in the national standard. At the same time, the primary crystal Cu6Sn5 formed by Cu and Sn was low due to the low Cu content, and the crystal SnSb with a small density moved upward and segregated. The composition of the babbitt alloy, especially the Cu content, should be strictly controlled to ensure the safe and reliable operation of the bearing.\",\"PeriodicalId\":41486,\"journal\":{\"name\":\"Strength Fracture and Complexity\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/sfc-210262\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength Fracture and Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/sfc-210262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength Fracture and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sfc-210262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

背景:某炼油厂余热锅炉给水泵的滚动轴瓦合金发生故障。目的:分析水泵轴瓦工作面脱落的原因,并对该故障提出建议。方法:分别采用x射线荧光分析、能谱分析、光学显微镜和扫描电镜对轴瓦合金的成分、显微组织、凹坑和裂纹形貌进行分析。结果:轴承轴瓦合金中Pb含量高,Cu含量低。初生晶Cu6Sn5低,低密度SnSb晶向上移动偏析。上述现象降低了巴氏合金的抗疲劳性能。轴瓦在使用过程中受到交变载荷作用,轴瓦合金工作表面产生了一些小裂纹。裂缝继续扩大并相互连接。轴瓦工作面出现疲劳点蚀,形成了大量的凹坑,并有几大块合金块脱落。结论:失效轴瓦合金中Pb含量过高,不符合国家标准中锡基巴氏合金的要求。同时由于Cu含量低,Cu和Sn形成的初生结晶Cu6Sn5较少,小密度的SnSb晶体向上移动并偏析。应严格控制巴氏合金的成分,特别是Cu含量,以确保轴承的安全可靠运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure analysis of a bearing bush of a feed water pump
BACKGROUND: A rolling bearing bush alloy of a feed water pump that is part of a waste heat boiler of an oil refinery has failed. OBJECTIVE: We try to analyze the reasons that caused the working surface of the bearing bush of the water pump to fall off and then give some suggestions to this failure. METHODS: The composition, microstructure, pit, and crack morphology of the bearing bush alloy were analyzed by the X-ray fluorescent analysis, the energy spectrum analysis, the optical microscope and the scanning electron microscope, respectively. RESULTS: The content of Pb in the bearing bush alloy was high, and the Cu content was low. The primary crystal Cu6Sn5 was low, and the crystal of SnSb with low density moved upward and segregated. The above phenomenon reduced the fatigue resistance of the babbitt alloy. The bearing bush was subjected to alternating loads in service, and several small cracks were generated on the bearing bush alloy working surface. The cracks continued to expand and connected with each other. Fatigue pitting occurred on the bearing bush working surface, a large number of pits were formed, and several large alloy blocks fell off. CONCLUSIONS: The Pb content in the failed bearing bush alloy was too high and did not meet the requirements of the Sn-based babbitt alloys in the national standard. At the same time, the primary crystal Cu6Sn5 formed by Cu and Sn was low due to the low Cu content, and the crystal SnSb with a small density moved upward and segregated. The composition of the babbitt alloy, especially the Cu content, should be strictly controlled to ensure the safe and reliable operation of the bearing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strength Fracture and Complexity
Strength Fracture and Complexity MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Strength, Fracture and Complexity: An International Journal is devoted to solve the strength and fracture unifiedly in non linear and systematised manner as complexity system. An attempt is welcome to challenge to get the clue to a new paradigm or to studies by fusing nano, meso microstructural, continuum and large scaling approach. The concept, theoretical and/or experimental, respectively are/is welcome. On the other hand the presentation of the knowledge-based data for the aims is welcome, being useful for the knowledge-based accumulation. Also, deformation and fracture in geophysics and geotechnology may be another one of interesting subjects, for instance, in relation to earthquake science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信