{"title":"用带有跳跃的维纳过程来模拟新流行病病例的对数","authors":"M. Lefebvre","doi":"10.3934/biophy.2022023","DOIUrl":null,"url":null,"abstract":"The number of daily new cases of an epidemic is assumed to evolve as the exponential of a Wiener process with Poissonian jumps that are exponentially distributed. The model parameters can be estimated by using the method of moments. In an application to the COVID-19 pandemic in the province of Québec, Canada, the proposed model is shown to be acceptable. General formulas for the probability that a given increase in the number of daily new cases is due to the normal variations of the continuous part of the process or rather to a jump of this process are given. Based on these formulas, the probability of observing the likely start of a new wave of infections is calculated for the application to the COVID-19 pandemic.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Wiener process with jumps to model the logarithm of new epidemic cases\",\"authors\":\"M. Lefebvre\",\"doi\":\"10.3934/biophy.2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of daily new cases of an epidemic is assumed to evolve as the exponential of a Wiener process with Poissonian jumps that are exponentially distributed. The model parameters can be estimated by using the method of moments. In an application to the COVID-19 pandemic in the province of Québec, Canada, the proposed model is shown to be acceptable. General formulas for the probability that a given increase in the number of daily new cases is due to the normal variations of the continuous part of the process or rather to a jump of this process are given. Based on these formulas, the probability of observing the likely start of a new wave of infections is calculated for the application to the COVID-19 pandemic.\",\"PeriodicalId\":7529,\"journal\":{\"name\":\"AIMS Biophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/biophy.2022023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2022023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A Wiener process with jumps to model the logarithm of new epidemic cases
The number of daily new cases of an epidemic is assumed to evolve as the exponential of a Wiener process with Poissonian jumps that are exponentially distributed. The model parameters can be estimated by using the method of moments. In an application to the COVID-19 pandemic in the province of Québec, Canada, the proposed model is shown to be acceptable. General formulas for the probability that a given increase in the number of daily new cases is due to the normal variations of the continuous part of the process or rather to a jump of this process are given. Based on these formulas, the probability of observing the likely start of a new wave of infections is calculated for the application to the COVID-19 pandemic.
期刊介绍:
AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology