A. Gamal, El-Sayed R. El-Sayed, Tarek El-Hamoly, Heba Kahil
{"title":"控释5-氨基异喹啉纳米复合材料的研制与生物评价:协同抗癌结肠癌","authors":"A. Gamal, El-Sayed R. El-Sayed, Tarek El-Hamoly, Heba Kahil","doi":"10.3934/biophy.2022003","DOIUrl":null,"url":null,"abstract":"The current study presents a bimodal therapeutic platform for cancer treatment. Bimodal implies that the presented drug loaded core-shell structure is capable of elevating the tumor tissue temperature (hyperthermia) through the superparamagnetic iron oxide core and simultaneously release a Poly (ADP-ribose) polymerase-1(PARP-1)-modifying agent from the thermoresponsive shell. Magnetic thermoresponsive nanocomposite MTN was synthesized via an in situ free radical polymerization of thermo-responsive (N-isopropylacrylamide) (NIPAAm) monomer in the presence of 11-nm monodisperse SPIONs. The composite was allowed to swell in various concentrations of the PARP inhibitor: 5-aminoisoquinoline (5-AIQ) forming drug-loaded magnetic thermoresponsive nanocomposite (MTN-5.AIQ). Structural characterization of the formed composite is studied via various experimental tools. To assess the coil to globule transition temperature, the lower critical solution temperature (LCST) is determined by differential scanning calorimetry (DSC) method and the cloud point (Tp) is determined by turbidometry. Magnetic thermoresponsive nanocomposite (MTN) is formed with excellent potential for hyperthermia. A high drug loading efficiency (85.72%) is obtained with convenient temperature dependent drug release kinetics. Biocompatibility and cytotoxic efficacy are tested on an in vivo and in vitro colorectal-adenocarcinoma model, respectively. MTN.5-AIQ administration exhibits normal hepatic and renal functions as well as lower toxic effect on normal tissue. In addition, the composite effectively inhibits Caco-2 cells viability upon incubation. Based on the obtained results, the proposed therapeutic platform can be considered as a novel, promising candidate for dual therapy of colorectal adenocarcinoma exhibiting a PARP-1 overexpression. as well as increased the inhabiting efficacy of 5-AIQ.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and bioevaluation of controlled release 5-aminoisoquinoline nanocomposite: a synergistic anticancer activity against human colon cancer\",\"authors\":\"A. Gamal, El-Sayed R. El-Sayed, Tarek El-Hamoly, Heba Kahil\",\"doi\":\"10.3934/biophy.2022003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study presents a bimodal therapeutic platform for cancer treatment. Bimodal implies that the presented drug loaded core-shell structure is capable of elevating the tumor tissue temperature (hyperthermia) through the superparamagnetic iron oxide core and simultaneously release a Poly (ADP-ribose) polymerase-1(PARP-1)-modifying agent from the thermoresponsive shell. Magnetic thermoresponsive nanocomposite MTN was synthesized via an in situ free radical polymerization of thermo-responsive (N-isopropylacrylamide) (NIPAAm) monomer in the presence of 11-nm monodisperse SPIONs. The composite was allowed to swell in various concentrations of the PARP inhibitor: 5-aminoisoquinoline (5-AIQ) forming drug-loaded magnetic thermoresponsive nanocomposite (MTN-5.AIQ). Structural characterization of the formed composite is studied via various experimental tools. To assess the coil to globule transition temperature, the lower critical solution temperature (LCST) is determined by differential scanning calorimetry (DSC) method and the cloud point (Tp) is determined by turbidometry. Magnetic thermoresponsive nanocomposite (MTN) is formed with excellent potential for hyperthermia. A high drug loading efficiency (85.72%) is obtained with convenient temperature dependent drug release kinetics. Biocompatibility and cytotoxic efficacy are tested on an in vivo and in vitro colorectal-adenocarcinoma model, respectively. MTN.5-AIQ administration exhibits normal hepatic and renal functions as well as lower toxic effect on normal tissue. In addition, the composite effectively inhibits Caco-2 cells viability upon incubation. Based on the obtained results, the proposed therapeutic platform can be considered as a novel, promising candidate for dual therapy of colorectal adenocarcinoma exhibiting a PARP-1 overexpression. as well as increased the inhabiting efficacy of 5-AIQ.\",\"PeriodicalId\":7529,\"journal\":{\"name\":\"AIMS Biophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/biophy.2022003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2022003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Development and bioevaluation of controlled release 5-aminoisoquinoline nanocomposite: a synergistic anticancer activity against human colon cancer
The current study presents a bimodal therapeutic platform for cancer treatment. Bimodal implies that the presented drug loaded core-shell structure is capable of elevating the tumor tissue temperature (hyperthermia) through the superparamagnetic iron oxide core and simultaneously release a Poly (ADP-ribose) polymerase-1(PARP-1)-modifying agent from the thermoresponsive shell. Magnetic thermoresponsive nanocomposite MTN was synthesized via an in situ free radical polymerization of thermo-responsive (N-isopropylacrylamide) (NIPAAm) monomer in the presence of 11-nm monodisperse SPIONs. The composite was allowed to swell in various concentrations of the PARP inhibitor: 5-aminoisoquinoline (5-AIQ) forming drug-loaded magnetic thermoresponsive nanocomposite (MTN-5.AIQ). Structural characterization of the formed composite is studied via various experimental tools. To assess the coil to globule transition temperature, the lower critical solution temperature (LCST) is determined by differential scanning calorimetry (DSC) method and the cloud point (Tp) is determined by turbidometry. Magnetic thermoresponsive nanocomposite (MTN) is formed with excellent potential for hyperthermia. A high drug loading efficiency (85.72%) is obtained with convenient temperature dependent drug release kinetics. Biocompatibility and cytotoxic efficacy are tested on an in vivo and in vitro colorectal-adenocarcinoma model, respectively. MTN.5-AIQ administration exhibits normal hepatic and renal functions as well as lower toxic effect on normal tissue. In addition, the composite effectively inhibits Caco-2 cells viability upon incubation. Based on the obtained results, the proposed therapeutic platform can be considered as a novel, promising candidate for dual therapy of colorectal adenocarcinoma exhibiting a PARP-1 overexpression. as well as increased the inhabiting efficacy of 5-AIQ.
期刊介绍:
AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology