{"title":"根据航拍图像自动更新道路数据库","authors":"E. Baltsavias, Chunsun Zhang","doi":"10.3929/ETHZ-A-004657154","DOIUrl":null,"url":null,"abstract":"This paper presents a practical system for automated 3-D road network reconstruction from aerial images using knowledge-based image analysis. The system integrates processing of color image data and information from digital spatial databases, extracts and fuses multiple object cues, takes into account context information, employs existing knowledge, rules and models, and treats each road subclass accordingly. The key of the system is the use of knowledge as much as possible to increase success rate and reliability of the results, working in 2-D images and 3-D object space, and use of 2-D and 3-D interaction when needed. Another advantage of the developed system is that it can correctly and reliably handle problematic areas caused by shadows and occlusions. This work is part of a project to improve and update the 1:25,000 vector maps of Switzerland. The system was originally developed to processed stereo images. Recently, it has been modified to work also with single orthoimages. The system has been implemented as a stand-alone software package, and has been tested on a large number of images with different landscape. In this paper, various parts of the developed system are discussed, and the results of our system in the tests conducted independently by our project partner in Switzerland, and the test results with orthoimages in a test site in The Netherlands are presented together with the system performance evaluation.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"6 1","pages":"199-213"},"PeriodicalIF":7.5000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Automated updating of road databases from aerial images\",\"authors\":\"E. Baltsavias, Chunsun Zhang\",\"doi\":\"10.3929/ETHZ-A-004657154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a practical system for automated 3-D road network reconstruction from aerial images using knowledge-based image analysis. The system integrates processing of color image data and information from digital spatial databases, extracts and fuses multiple object cues, takes into account context information, employs existing knowledge, rules and models, and treats each road subclass accordingly. The key of the system is the use of knowledge as much as possible to increase success rate and reliability of the results, working in 2-D images and 3-D object space, and use of 2-D and 3-D interaction when needed. Another advantage of the developed system is that it can correctly and reliably handle problematic areas caused by shadows and occlusions. This work is part of a project to improve and update the 1:25,000 vector maps of Switzerland. The system was originally developed to processed stereo images. Recently, it has been modified to work also with single orthoimages. The system has been implemented as a stand-alone software package, and has been tested on a large number of images with different landscape. In this paper, various parts of the developed system are discussed, and the results of our system in the tests conducted independently by our project partner in Switzerland, and the test results with orthoimages in a test site in The Netherlands are presented together with the system performance evaluation.\",\"PeriodicalId\":50341,\"journal\":{\"name\":\"International Journal of Applied Earth Observation and Geoinformation\",\"volume\":\"6 1\",\"pages\":\"199-213\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2005-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Earth Observation and Geoinformation\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3929/ETHZ-A-004657154\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-004657154","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Automated updating of road databases from aerial images
This paper presents a practical system for automated 3-D road network reconstruction from aerial images using knowledge-based image analysis. The system integrates processing of color image data and information from digital spatial databases, extracts and fuses multiple object cues, takes into account context information, employs existing knowledge, rules and models, and treats each road subclass accordingly. The key of the system is the use of knowledge as much as possible to increase success rate and reliability of the results, working in 2-D images and 3-D object space, and use of 2-D and 3-D interaction when needed. Another advantage of the developed system is that it can correctly and reliably handle problematic areas caused by shadows and occlusions. This work is part of a project to improve and update the 1:25,000 vector maps of Switzerland. The system was originally developed to processed stereo images. Recently, it has been modified to work also with single orthoimages. The system has been implemented as a stand-alone software package, and has been tested on a large number of images with different landscape. In this paper, various parts of the developed system are discussed, and the results of our system in the tests conducted independently by our project partner in Switzerland, and the test results with orthoimages in a test site in The Netherlands are presented together with the system performance evaluation.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.